Particle-vibration coupling in halo nuclei

R.A. Broglia, P.F. Bortignon, (Milano)
G. Colo’, G.Gori, E. Vigezzi

F. Barranco (Sevilla)

G.Gori et al., nucl-th/0301097
Aim of the talk

To discuss the role of core polarization in halo nuclei.

To show that, based on limited phenomenological input, it is possible to provide a quantitative calculation of the basic features of 11Be, 12Be, 10Li, 11Li and of the spectroscopic factors, in reasonable agreement with experiment.
The parity inversion problem in ^{11}Be

<table>
<thead>
<tr>
<th></th>
<th>^{11}Be</th>
<th>^{10}Be</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation energy</td>
<td>0.5 MeV</td>
<td>6.8 MeV</td>
</tr>
<tr>
<td>Lowest excited state</td>
<td>0.32 MeV,</td>
<td>3.4 MeV</td>
</tr>
<tr>
<td>Radius</td>
<td>3 fm</td>
<td>2.3 fm</td>
</tr>
</tbody>
</table>

Good situation for the mean field approximation:

But! The quantum numbers of the ground state are not those predicted by the mean field (1p1/2)

but 2s1/2, in the next shell!!

Stronger spin-orbit force for halo states?

(N. Vinh Mau, *Nucl. Phys. A592(95)33*)

(F. Nunes et al., *Nucl. Phys. A596(96)171*)
Experimental systematics

Mean-field results with Skyrme force
(Sagawa, Brown, Esbensen PLB 309(93)1)
A. SELF ENERGY

\[E_{\text{shift}} = -2.5 \text{ MeV} \]

\[S_{1/2} \]

\[d_{5/2} \]

\[2^+ \]

\[\hbar \Omega_2 = 3.4 \text{ MeV} \]

\[\beta_2 \sim 1.0 \]

\[S_{1/2} \]

B. PAULI BLOCKING OF GROUND STATE CORRELATIONS

\[n \otimes {}^{10}\text{Be} \]

\[P_{1/2} \]

\[P_{3/2} \]

\[\Rightarrow E_{\text{shift}} = +2.5 \text{ MeV} \]
Fig. 4.29. Representation of the results of Bernard and Nguyen Van Giai [66] for the neutron quasiparticle energies in the valence shell of 208Pb. The observed values are plotted on the left-hand side and the results of the Skyrme III–Hartree–Fock approximation on the right-hand side. The middle column gives the quasiparticle energies, see section 4.6.5.

Fig. 4.30. Representation of the results of Bonsignori et al. [315] for the neutron quasiparticle energies in the valence shell of 208Pb. The notation is the same as in fig. 4.29.
COLLECTIVE SURFACE VIBRATIONS

\[R(\vec{r}) = |R_0|^2 + \sum_{\alpha} \alpha^* \chi_\alpha(\vec{r}) \chi_\alpha(\vec{r}) \]

\[\beta = 2, 3, 4, 5, 6 \]

\[\hbar \omega = \frac{1}{2} \sqrt{\frac{2}{B}} \]

\[\beta_a = \sqrt{2 + \frac{1}{4} \sqrt{\frac{2}{B}} \}

The values of \(\hbar \omega \) and \(\beta_a \) are taken from experiment or alternatively from an RPA calculation.

THE MODEL HAMILTONIAN

\[H = \frac{p^2}{2m} + U(\vec{r}, \vec{x}) + H_{\text{cell}} \]

where

\[U(\vec{r}, \vec{x}) = U_0 \left(\frac{r}{x + \sum \alpha \chi_\alpha \chi_\alpha} \right) + U_0(r) - \frac{1}{2} \frac{\partial U_0}{\partial r} \sum \alpha \chi_\alpha \chi_\alpha \]

\[\Rightarrow H = \frac{p^2}{2m} + U_0(r) + H_{\text{cell}} + H_{\text{pv}} \]

With

\[H_{\text{pv}} = \frac{\partial U_0}{\partial r} \sum \alpha \sqrt{\frac{\hbar \omega_a}{2 \xi_a}} \left[\omega_a^+ + (-1)^a \omega_a^- \right] \chi_\alpha(r) \]
Pauli-blocking correlations

The 10Be core itself is not a simple Slater determinant assumed in mean field:

There are ground state correlations, that is, mixing of configurations \rightarrow partial occupation of orbits that in a pure mean field description are completely empty.

When the halo neutron is added to form 11Be, the extra neutron will partially block the single-particle orbits available for 10Be to correlate: the binding energy decreases.

The effect is strongest when associated to the lowest "empty" orbit, that is to the $1p_{1/2}$ orbit.

In this way Sagawa, Brown ed Esbensen explained the parity inversion in 11Be.
Elaborating on the 11Be calculation

New elements of our calculation:

Standard Woods-Saxon potential including spin-orbit according to Bohr and Mottelson

We include the (discretized) continuum for s-, p- and d-orbits:

Schrödinger equation solved with reflecting boundary conditions at a variable radius $R \rightarrow \infty$.

The calculations have been carried out using the Nuclear Field Theory: ...

*a systematic and fully consistent scheme for the particle-vibration coupling. It allows a coherent treatment of configuration mixing, .

Pauli-blocking correlations*
\[(\text{Saxon-Woods + spin-orbit B + M Vol. I})\]

\[U_0 = -565 \text{MeV} + \frac{N-Z}{A} 33 \text{MeV}\]

150 MeV

40 fm

150 keV

(hundred's of s.p. states)

\[\text{Figure 2-30} \quad \text{Energies of neutron orbits calculated by C. J. Veje (private communication).}\]
Fermionic degrees of freedom:
• s1/2, p1/2, d5/2 Wood-Saxon levels up to 150 MeV

Bosonic degrees of freedom:
• 2+ and 3- QRPA solutions with energy up to 50 MeV;
 residual interaction: multipole-multipole separable with the coupling constant tuned to reproduce E(2+)=3.36 MeV e 0.6<β2<0.7

Effective, energy-dependent matrix (Bloch-Horowitz)
\[\begin{align*}
\text{b}|_{\text{limit}} &= \langle b \mid -i \frac{\partial}{\partial x} Y_n \mid a \rangle \sqrt{\frac{\hbar \omega}{C_1}} \\
\text{c}|_{\text{limit}} &= \frac{\langle b_{\text{limit}} \mid Y_{2a} \rangle^2}{\mathcal{E}_a - (\mathcal{E}_b + \hbar \omega)} \\
\text{f}|_{\text{limit}} &= \frac{\langle c_{\text{limit}} \mid Y_{2a} \rangle^2}{\mathcal{E}_a - (2\mathcal{E}_a - \mathcal{E}_b + \hbar \omega)}
\end{align*} \]
Admixture of $d_{5/2} \times 2^+$ configuration in the $1/2^+$ g.s. of ^{11}Be is about 20%.

9Be(11Be,10Be+ γ) X

T. Aumann et al.
PRL 84(2000)35

p(11Be,10Be)d

S. Fortier et al.
Particle-vibration coupling in ^{11}Be

NFT ground state

$$| \frac{1}{2} + \rangle = \sqrt{0.87} | s_{1/2} \rangle + \sqrt{0.13} | d_{5/2} \otimes 2 + \rangle$$

$$| \frac{1}{2} + \rangle = \sqrt{0.84} | s_{1/2} \rangle + \sqrt{0.16} | d_{5/2} \otimes 2 + \rangle$$

$^{11}\text{Be}(p,d)^{10}\text{Be}$ in inverse kinematic detecting both the ground state as well as the 2^+ excited state of ^{10}Be.
Good agreement between theory and experiment concerning energy and spectroscopic factors

<table>
<thead>
<tr>
<th></th>
<th>Exper.</th>
<th>Theory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>particle-vibration +Argonne</td>
<td>mean field</td>
</tr>
<tr>
<td>$E_{9/2^+}$</td>
<td>-0.504 MeV</td>
<td>-0.48 MeV</td>
<td>\sim 0.14 MeV</td>
</tr>
<tr>
<td>$E_{9/2^-}$</td>
<td>-0.18 MeV</td>
<td>-0.27 MeV</td>
<td>-3.12 MeV</td>
</tr>
<tr>
<td>$S[1/2^+]$</td>
<td>0.77</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td>$S[1/2^-]$</td>
<td>0.96</td>
<td>0.96</td>
<td>1</td>
</tr>
</tbody>
</table>

Experimental Spectroscopic Factors from

B. Zwieglinski et al., Nucl.Phys.A315(1979) 124
CORE + 2neutrons

COLLECTIVE SURFACE VIBRATIONS

$R(\phi) = R_0 \left[1 + \sum_{n} \alpha_n^* X_n(\phi) \right] \quad \lambda = 2^+, 3^+, 4^+, 5^-$

$H_{\text{coll}} = \frac{1}{2} \sum_{n \neq m} \left(B_{\lambda n} \alpha_n^* \alpha_m^* + C_{\lambda n} \alpha_n^* \alpha_m \right)$

$\beta_\lambda = \sqrt{2\lambda + 1} \sqrt{\frac{\hbar \omega}{2C_\lambda}}$

MODEL HAMILTONIAN

$H = \frac{\vec{p}_1^2}{2m} + \frac{\vec{p}_2^2}{2m} + \frac{\vec{p}_{\text{core}}^2}{2M_{\text{core}}} + U(\vec{r}_1; \vec{r}_2) + U(\vec{r}_1; \alpha) + U(\vec{r}_2; \alpha) + H_{\text{coll}}$

with $\vec{p}_{\text{core}} = -\vec{p}_1 - \vec{p}_2$

$H = \frac{\vec{p}_1^2}{2\mu} + \frac{\vec{p}_2^2}{2\mu} + U_{\text{nm}}(\vec{r}_1; \vec{r}_2) + U(\vec{r}_1; \alpha) + U(\vec{r}_2; \alpha) + H_{\text{coll}} + \frac{\vec{p}_1 \cdot \vec{p}_2}{M_{\text{core}}}$

where

$U(\vec{r}; \alpha) = U_0 \left(\frac{r}{1 + \sum \alpha_n^* X_n} \right)$

$\leq U_0(r) - \nabla r \cdot \frac{\partial U_0}{\partial r} \sum \alpha_n^* X_n(\vec{r}) \quad \alpha \neq 1.$
Bloch–Horowitz perturbation method

> Total Space: \{ \begin{array}{c} \uparrow \uparrow \\ \downarrow \downarrow \\ \uparrow \uparrow \\ \downarrow \downarrow \end{array} \}

> Model Space: \{ \begin{array}{c} \uparrow \uparrow \\ \downarrow \downarrow \end{array} \}

Model Space states must not appear as intermediate states

\[a^3 \uparrow \downarrow a = \left[a^3 \uparrow \downarrow a \right] / [E_g - E_{\text{Int}}] \]
Fermionic degrees of freedom:
- two particle states coupled to zero angular momentum on s1/2, p1/2, d5/2 Woods-Saxon levels up to 150 MeV

Bosonic degrees of freedom:
- 1-, 2+ and 3- QRPA solutions up to 50 MeV, associated to a multipole-multipole separable interaction with coupling constant tuned to reproduce $E(1^-)=2.7 \text{ MeV}$ and $B(E1)=0.052 \text{ e}^2\text{fm}^2$, $E(2^+)=2.1 \text{ MeV}$ and $0.6<\beta_2<0.7$

12Be

Effective, energy-dependent matrix
The pairing energy between the valence neutrons originates mostly from polarization effects, and not by the nucleon-nucleon bare interaction (Argonne potential)
Spectroscopic factors from \(^{12}\text{Be},^{11}\text{Be} + \gamma\) reaction to \(\frac{1}{2}^+\) and \(\frac{1}{2}^-\) final states:

\[S[\frac{1}{2}^-] = 0.42 \pm 0.10 \quad S[\frac{1}{2}^+] = 0.37 \pm 0.10 \]

A. Navin et al.,
PRL 85(2000)266
\[S[1/2^-] = |\langle ^{11}\text{Be}|a_{1p1/2}|^{12}\text{Be}\rangle|^2 \approx |T_{1/2^-}|^2. \]

\[T_{1/2^-} = \sum_{n_{1p1/2}} \xi_{n_{1p1/2}}^* \left\{ \sum_{p, p'} \xi_p \xi_{pp'} x_{np_{1/2}} \right\} + \sum_{p, \lambda, \lambda', \lambda''} \xi_{p\lambda} \xi_{\lambda'\lambda''} x_{np_{1/2}}. \]

\[\xi_p = \frac{\xi_p}{\sqrt{N(^{11}\text{Be})}}, \quad \xi_{it'} = \frac{\xi_{it'}}{\sqrt{N(^{12}\text{Be})}}, \]

\(\xi_i \) are obtained diagonalizing the energy-dependent matrix.
Spectroscopic factors measure the overlap between 11Be and 12Be

Good agreement between theory and experiment concerning energy and spectroscopic factors

<table>
<thead>
<tr>
<th></th>
<th>Exper.</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>particle-vibration + Argonne</td>
</tr>
<tr>
<td>S_{2n}</td>
<td>-3.673 MeV</td>
<td>-3.58 MeV</td>
</tr>
<tr>
<td>s^2, p^2, d^2</td>
<td>23%, 29%, 48%</td>
<td>0%, 100%, 0%</td>
</tr>
<tr>
<td>$S[1/2^+]$</td>
<td>0.42±0.10</td>
<td>0.31</td>
</tr>
<tr>
<td>$S[1/2^-]$</td>
<td>0.37±0.10</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Particle-vibration coupling in 10Li and 11Li
Comparison with experiment

<table>
<thead>
<tr>
<th></th>
<th>Exper.</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>particle-vibration +Argonne</td>
</tr>
<tr>
<td>(^{10}_3 \text{Li}_7) (not bound)</td>
<td>s</td>
<td>0.1 – 0.2 MeV</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.5 – 0.6 MeV</td>
</tr>
<tr>
<td>(^{11}_3 \text{Li}_8) (bound)</td>
<td>(S_{2n})</td>
<td>0.294 ± 0.03 MeV</td>
</tr>
<tr>
<td></td>
<td>(S^2, p^2)</td>
<td>50 % , 50 %</td>
</tr>
<tr>
<td></td>
<td>(\langle r^2 \rangle^{1/2})</td>
<td>3.55 ± 0.1 fm</td>
</tr>
<tr>
<td></td>
<td>(\sigma_{\perp})</td>
<td>48 ± 10 (\frac{\text{MeV}}{c})</td>
</tr>
</tbody>
</table>
Spatial correlations between
the two halo neutrons
ADVANTAGES OF THE MODEL:

- Standard mean-field potential, without adjustments of the spin-orbit force or l-dependent terms; the same parametrization for Li and Be isotopes

- Coupling with continuum states is taken into account

- Bare interaction between the valence neutrons, without ad-hoc density dependent terms

- Limited amount of phenomenological input: strength of low-lying vibrations

- Consistent treatment of the Pauli principle (Nuclear Field Theory)

- SOME LIMITATIONS OF THE MODEL:

- One-phonon configurations

- Harmonic vibrations of the core

- Tamm-Dancoff treatment of pairing vibrations
Pairing gaps in uniform matter calculated with effective and bare interactions look similar...

However, in 120Sn Argonne potential reproduces experiment only taking into account renormalization effects.