RESEARCH PAPERS 
 
D. Anselmi 
 
A similar list can be found at Spires and at the LosAlamos arXiv 
Proceedings of conferences: see here
 
[59] D. Anselmi and E. Ciuffoli, Renormalization of high-energy Lorentz violating four fermion models, Phys. Rev. D 81 (2010) 085043 and arXiv:1002.2704 [hep-ph]. 
 
[58] D. Anselmi and M. Taiuti, Renormalization of high-energy Lorentz violating QED, Phys. Rev. D 81 (2010) 085042 and arXiv:0912.0113 [hep-ph] 
 
[57] D. Anselmi, Standard Model Without Elementary Scalars And High Energy Lorentz Violation, Phys. Rev. D 81 (2010) 085042 and arXiv:0904.1849. 
 
[56] D. Anselmi, Weighted power counting, neutrino masses and Lorentz violating extensions of the Standard Model, Phys. Rev. D 79 (2009) 025017 and arXiv:0808.3475 [hep-ph]
 
[55] D. Anselmi, Weighted power counting and Lorentz violating gauge theories. II: Classification, Ann. Phys. 324 (2009) 1058 and  arXiv:0808.3474 [hep-th]
 
[54] D. Anselmi, Weighted power counting and Lorentz violating gauge theories. I: General properties, Ann. Phys. 324 (2009) 874 and  arXiv:0808.3470 [hep-th]
 
[53] D. Anselmi, Weighted scale invariant quantum field theories, JHEP 02 (2008) 051 and arXiv:0801.1216 [hep-th]
 
[52] D. Anselmi and M. Halat, Renormalization of Lorentz violating theories, Phys. Rev. D 76 (2007) 125011 and arXiv:0707.2480 [hep-th] 
 
[51] D. Anselmi and A. Benini, Improved Schwinger-DeWitt techniques for higher-derivative corrections to operator determinants, JHEP 10 (2007) 099 and arXiv:0704.2840v1 [hep-th]
 
[50] D. Anselmi and M. Halat, Renormalizable acausal theories of classical gravity coupled with interacting quantum fields, Class. Quantum Grav. 24 (2007) 1927 and hep-th/0611131.  
 
[49] D. Anselmi, Renormalization and causality violations in classical gravity coupled with quantum matter, JHEP 01 (2007) 062 and hep-th/0605205
 
[48] D. Anselmi and M. Halat, Dimensionally continued infinite reduction of couplings, JHEP 01 (2006) 077 and hep-th/0509196
 
[47] D. Anselmi, Infinite reduction of couplings in non-renormalizable quantum field theory, JHEP 08 (2005) 029 and hep-th/0503131.  
 
[46] D. Anselmi, Renormalization of a class of non-renormalizable theories, JHEP 07 (2005) 077 and hep-th/0502237
 
[45]  D. Anselmi, Deformed dimensional regularization for odd (and even) dimensional theories, IJMPA 20 (2005) 1389 and hep-th/0404053
 
[44] D. Anselmi, A note on the dimensional regularization of the Standard Model coupled with Quantum Gravity, Phys. Lett .B 596 (2004) 90 and  hep-th/0404032
 
[43] D. Anselmi, Consistent irrelevant deformations of interacting conformal field theories, JHEP 10 (2003) 045 and hep-th/0309251
 
[42] D. Anselmi, Finiteness of quantum gravity coupled with matter in three spacetime dimensions, Nucl. Phys. B 687 (2004) 124 and hep-th/0309250. 
 
[41] D. Anselmi, Renormalization of quantum gravity coupled with matter in three dimensions, Nucl. Phys. B 687 (2004) 143 and hep-th/0309249
 
[40] D. Anselmi, Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings, Class. Quantum Grav. 20 (2003) 2355 and hep-th/0212013
[39] D. Anselmi, Inequalities for trace anomalies, length of the RG flow, distance between the fixed points and irreversibility, Class. Quantum Grav. 21 (2004) 29 and hep-th/0210124.  
[38] D. Anselmi, "Integrability" of RG flows and duality in three dimensions in the 1/N expansion, Nucl. Phys. B 658 (2003) 440 and hep-th/0210123.  
[37] D. Anselmi and G. Festuccia, Search for flow invariants in even and odd dimensions, New J. Phys. 5 (2003) 11 and hep-th/0209252.  
[36] D. Anselmi, A note on the improvement ambiguity of the stress tensor and the critical limits of correlation functions, J. Math. Phys. 43 (2002) 2965 and hep-th/0110292.  
[35] D. Anselmi, Kinematic sum rules for trace anomalies, JHEP 11 (2001) 033 and hep-th/0107194.  
[34] D. Anselmi, A universal flow invariant in quantum field theory, Class. Quantum Grav. 18 (2001) 4417 and hep-th/0101088.  
[33] D. Anselmi, Large-N expansion, conformal field theory and renormalization-group flows in three dimensions, JHEP 06 (2000) 042 and hep-th/0005261.  
[32] D. Anselmi, L. Girardello, M. Porrati and A. Zaffaroni, A Note on the Holographic Beta and C Functions, Phys. Lett. B 481 (2000) 346 and hep-th/0002066.  
[31] D. Anselmi, Irreversibility and higher-spin conformal field theory, Class. Quantum Grav. 17 (2000) 2847 and hep-th/9912122.  
[30] D. Anselmi, Towards the classification of conformal field theories in arbitrary even dimension, Phys. Lett. B 476 (2000) 182 and hep-th/9908014.  
[29] D. Anselmi, Higher-spin current multiplets in operator-product expansions, Class. Quantum Grav. 17 (2000)1383 and hep-th/9906167.  
[28] D. Anselmi, Quantum irreversibility in arbitrary dimension, Nucl. Phys. B 567 (2000) 331 and hep-th/9905005.  
[27] D. Anselmi, Anomalies, unitarity and quantum irreversibility, Ann. Phys. (NY) 276 (1999) 361 and hep-th/9903059.  
[26] D. Anselmi and A. Kehagias, Subleading corrections and central charges in the AdS/CFT correspondence, Phys. Lett. B 455 (1999) 155 and hep-th/9812092.  
[25] D. Anselmi, Quantum conformal algebras and closed conformal field theory, Nucl. Phys. B 554 (1999) 415 and hep-th/9811149.  
[24] D. Anselmi, The N=4 quantum conformal algebra Nucl. Phys. B 541 (1999) 369 and hep-th/9809192.  
[23] D. Anselmi, Theory of higher spin tensor currents and central charges, Nucl. Phys. B 541 (1999) 323 and hep-th/9808004.  
[22] D. Anselmi, J. Erlich, D.Z. Freedman and A.A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 and hep-th/9711035.  
[21] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric theories, Nucl. Phys. B 526 (1998) 543 and hep-th/9708042.  
[20] D. Anselmi, Central functions and their physical implications, JHEP 05 (1998) 005 and hep-th/9702056.  
[19] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Universality of the operator product expansions in SCFT_4, Phys. Lett. B 394 (1997) 329 and hep-th/9608125.  
[18] D. Anselmi, Quantum topological invariants, gravitational instantons and the topological embedding, Class. Quantum Grav. 14 (1997) 2031 and hep-th/9607206
[17] D. Anselmi, M.T. Grisaru and A.A. Johansen, A critical behaviour of anomalous currents, electro-magnetic universality and CFT_4, Nucl. Phys. B 491 (1997) 221 and hep-th/9601023.  
[16] D. Anselmi, On field theory quantization around instantons, Class. Quantum Grav. 14 (1997) 1015 and hep-th/9507167.  
[15] D. Anselmi, Topological field theory and physics, Class. Quantum Grav. 14 (1997) 1 and hep-th/9504049.  
[14] D. Anselmi, Anomalies in instanton calculus, Nucl. Phys. B 439 (1995) 617 and hep-th/9411049.  
[13] D. Anselmi and P. Fré, Gauged hyperinstantons and monopole equations, Phys. Lett. 347B (1995) 247 and hep-th/9411205.  
[12] D. Anselmi, Nodes as composite operators in matrix models, Class. Quantum Grav. 12 (1995) 1135 and hep-th/9411206.  
[11] D. Anselmi, P. Fré, L. Girardello and P. Soriani, Constrained topological field theory, Phys. Lett. 335B 416 and hep-th/9405174.  
[10] D. Anselmi, P. Fré, L. Girardello and P. Soriani, Constrained topological gravity from twisted N=2 Liouville theory, Nucl. Phys. B427 (1995) 351 and hep-th/9404109.  
[9] D. Anselmi, More on the subtraction algorithm, Class. Quantum Grav. 12 (1995) 319 and hep-th/9407023.  
[8] D. Anselmi, Removal of divergences with the Batalin-Vilkovisky formalism, Class. Quantum Grav. 11 (1994) 2181 and hep-th/9309085.  
[7] D. Anselmi, M. Billò, P. Fré, L. Girardello and A. Zaffaroni, ALE Manifolds and Conformal Field Theories, Int. J. Mod. Phys. A9 (1994) 3007 and hep-th/9304135.  
[6] D. Anselmi, Covariant Pauli-Villars Regularization of Quantum Gravity at the One Loop Order, Phys. Rev. D48 (1993) 5751 and hep-th/9307014.  
[5] D. Anselmi and P. Fré, Topological sigma-models in Four Dimensions and Triholomorphic Maps, Nucl. Phys. B416 (1994) 255 and hep-th/9306080.  
[4] D. Anselmi and P. Fré, Topological Twist in Four Dimensions, R-duality and Hyperinstantons, Nucl. Phy. B404 (1993) 288 and hep-th/9211121.  
[3] D. Anselmi and P. Fré, Twisted N=2 Supergravity as Topological Gravity in Four Dimensions, Nucl. Phys. B392 (1993) 401 and hep-th/9208029.  
[2] D. Anselmi, Delta(0) divergences and the Functional Measure, Phys. Rev. D 48 (1993) 680.  
[1] D. Anselmi, Functional Integration Measure in Quantum Gravity, Phys. Rev. D 45 (1992) 4473.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
__________
Created with the TRIAL version of Visual Vision's EasyWebEditor. To remove this text, please purchase the full version.
EasyWebEditor, the easy Website creator software.