Interazioni deboli

La probabilità di transizione W(regola d'oro) dipende solo dallo spazio delle fasi:

$$W = 2\pi |M|^{2} \frac{dN}{dE_{0}} (E_{0} = E_{p} + E_{\bar{v}} + E_{e}) \text{ (l'energia è trasportata solo} da e e v)
$$\frac{dN}{dE_{0}} = 16\pi^{2} p^{2} (E - E_{0})^{2} dp; \text{ N}_{e}(p) dp = p^{2} (E - E_{0})^{2} dp; \text{ N}_{e}(p) dp = p^{2} (E - E_{0})^{2} \sqrt{1 - (\frac{m_{v}}{E})^{2}} dp (se m_{v} \neq 0)$$$$

 $L_0 - L$

Spettro di energia dell'elettrone

Se l'elettrone è relativistico: $N(E)dE = E^2(E_0 - E)^2 dE \Rightarrow N = \int_0^{E_0} N(E)dE = \frac{E_0^5}{30}$ $\Rightarrow W \propto G^2 E_0^5, E_0 = energia \max dell'elettrone = m_n - m_p$

G si estrae dalle probabilità di transizioni (vite medie) in funzione di E_0 : Le vite medie dei decadimenti beta variano da secondi a anni (E_0^{5})

Le correnti deboli cariche

Esistono (oltre quella elettronica) altri 2 tipi di correnti deboli cariche:

 $: \tau^{-} \to e^{-} v_{\tau} \overline{v_{e}}$ $: \mu^{-} \to e^{-} \nu_{\mu} \overline{\nu}_{e}$ Questo porta all'introduzione di tre doppietti leptonici $\begin{vmatrix} e^- \\ v_- \end{vmatrix}, \begin{vmatrix} \mu^- \\ v_- \end{vmatrix}, \begin{vmatrix} \tau^- \\ v_- \end{vmatrix} + antiparticelle$ Evidenza sperimentale: solo gli stati con elicità negativa partecipano alle interazioni deboli. $(\lambda = \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} = \pm \frac{1}{2}$ se s = 1/2)Si incorpora nella teoria con il fattore $(1-\gamma_5)$ nella corrente $(V-A).(1-\gamma_5)$ è un proiettore di elicità negativa. In QED invece ho entranbi gli stati di elicità $\gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \gamma^{\mu} \equiv vettore; \gamma^{\mu}\gamma^{5} \equiv vettore \ assiale$ $\frac{1}{2}(1-\gamma^5) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow seleziona \ le \ due \ componenti \ in \ basso \ dello \ spinore: \begin{bmatrix} u_2 \\ u_3 \\ u_3 \end{bmatrix}$ N.B. L'elicità λ è un buon numero quantico (Lorentz) solo per particelle di massa nulla (neutrini?)

La corrente leptonica debole :

v e
$$J^{\mu} = \frac{g}{\sqrt{2}} \overline{u}(e) \gamma^{\mu} \frac{1}{2} (1 - \gamma^5) u(v_e)$$
 Differenza da QED

L'interazione puntuale alla Fermi crea problemi di unitarietà e, d'altra parte sappiamo che le interazioni deboli hanno range limitato \implies \implies Propagatore bosonico massivo.

Le regole di Feynman per la costruzione delle ampiezze si Modificano rispetto a QED:

1) Pr opagatore :
$$-i \frac{(g_{\mu\nu} - q_{\mu}q_{\nu}/M^2)}{q^2 - M^2} \xrightarrow{q^2 << M^2} i \frac{g_{\mu\nu}}{M^2} (in \ QED \ era \ -i \frac{g_{\mu\nu}}{q^2})$$

2) fattore di vertice : $\frac{g_W}{2\sqrt{2}} \gamma^{\mu} (1 - \gamma^5), g_W = \sqrt{4\pi\alpha_W} (in \ QED \ era \ -ie\gamma^{\mu})$

Es. Il decadimento inverso del μ :

 $v_{\mu} + e^- \rightarrow \mu^- + v_e$ (analogo a $\mu e \rightarrow \mu e$ in QED)

$$\sum_{p_1 e}^{p_3 v_e} q \qquad \mu p_4 \qquad \uparrow q = p_1 - p_3; \text{ se } q^2 << M_W^2, \text{ il propagatore si semplifica} : \frac{ig_{\mu\nu}}{M_W^2}$$
$$M = i \frac{g_W^2}{8M_W^2} \left\{ \overline{u}(3)\gamma^{\mu}(1-\gamma^5)u(1) \right\} \left\{ \overline{u}(4)\gamma^{\mu}(1-\gamma^5)u(2) \right\}$$
Oppure con la notazione di Fermi (G) e la modifica alla corrente (1- γ_5)

$$M = \frac{G}{\sqrt{2}} \left\{ \overline{u}(3)\gamma^{\mu} \frac{(1-\gamma^{5})}{2} u(1) \right\} \left\{ \overline{u}(4)\gamma^{\mu} \frac{(1-\gamma^{5})}{2} u(2) \right\} con \quad \frac{G}{\sqrt{2}} = \frac{g_{W}^{-1}}{8M_{W}^{2}}$$

Modulo quadro dell'ampiezza, mediata sugli spin iniziali e sommata su quelli finali

$$|M|^{2} = 2\left(\frac{g_{W}}{M_{W}}\right)^{4}(p_{1} \cdot p_{2})(p_{3} \cdot p_{4}) = 2\left(\frac{g_{W}}{M_{W}}\right)^{4}(p_{1} \cdot p_{2})^{2} = 2\left(\frac{g_{W}}{M_{W}}\right)^{4}s^{2} = 64G^{2}s^{2}$$

Cfr. Nel caso di QED $\mu + e \rightarrow \mu + e$

$$|M|^{2} = 8\frac{e^{4}}{t^{2}}\left\{s^{2} + u^{2}\right\}$$

Nel c.m. le particelle hanno tutte energia E (trascurando le masse) quindi s=(2E)² La regola d'oro per le interazioni $1+2 \rightarrow 3+4$:

 $\frac{d\sigma}{d\Omega} = \left(\frac{1}{8\pi}\right)^2 \frac{|M|^2}{(E_1 + E_2)^2} \frac{|\vec{p}_f|}{|\vec{p}_i|} = \frac{1}{2} \left[\frac{g_W^2 E}{4\pi M_W^2}\right]^2, indipendente \ dall'angolo \ di \ sc \ attering$

La sezione d'urto differenziale si può scrivere anche in funzione di $t=2E^2(\cos\theta-1)$:

$$dt = 2E^2 d\cos\theta \Rightarrow \frac{d\sigma}{dt} = \frac{1}{2E^2} 2\pi \frac{d\sigma}{d\Omega} = \frac{1}{32\pi} \frac{g_W^4}{M_W^4} = \frac{G^2}{\pi}$$

Si può integrare su t: $-4E^2 = -s < t < 0$: $\sigma = \int_{-s}^{0} \frac{G^2}{\pi} dt = \frac{G^2}{\pi} s$

La sezione d'urto differenziale è isotropa; la sezione d'urto totale cresce come s.

L'ampiezza di $v_{\mu} + e^- \rightarrow \mu^- + v_e$ per simmetria di crossing mi fornisce anche quella del decadimento: $\mu^- \rightarrow v_{\mu} + e^- + \overline{v}_e$ da cui:

 $\boxed{\frac{1}{\Gamma_{\mu}} \equiv \tau_{\mu} = \frac{192\pi^{3}}{G^{2}m_{\mu}^{5}}}_{\text{La <u>dipendenza da m^{-5}}} \text{Dalla misura di } \tau_{\mu} (\text{ e dalla conoscenza di } m_{\mu}) \text{ si}$ </u> debole (trascurando le masse finali).

Risultato sperimentale: τ_{μ} =2.197 10⁻⁶ s, m_µ=0.105658 GeV \Longrightarrow

 $G = 1.166 \ 10^{-5} \ GeV^{-2}$

$$con \quad \frac{G}{\sqrt{2}} = \frac{g_W^2}{8M_W^2}, M_W \approx 80 \text{ GeV} \Rightarrow g_W = 0.66, \alpha_W = \frac{g_W^2}{4\pi} = \frac{1}{129}$$

Le interazioni deboli sono tali non tanto perchè la costante di accoppiamento sia debole, quanto perchè il mediatore (W) è molto pesante e il temine di massa nel propagatore (a bassi Q²) domina.

Se $Q^2 \sim M_W^2$ (80 GeV)² le interazioni deboli diventano paragonabili a quelle elettromagnetiche:

UNIFICAZIONE?

Torniamo a $v_{\mu} + e^{-} \rightarrow \mu^{-} + v_{e}$: $\sigma = \frac{G^{2}}{\pi} s \xrightarrow{c.m.} \frac{4}{\pi} E^{2} = 1.48 \cdot 10^{-10} \, GeV^{-2} \cdot E^{2} (E \text{ in GeV}) \approx 0.576 \cdot 10^{-37} \, cm^{2} \cdot E^{2}$ Normalmente la reazione avviene nel laboratorio: $s = (2E)^{2} = (E_{lab} + m_{e})^{2} - E_{lab}^{2} \cong 2m_{e}E_{lab} \Rightarrow E_{lab} \cong \frac{2E^{2}}{m} (E = 1GeV \Rightarrow E_{lab} \approx 4000 \, \text{GeV})$

$$\sigma_{lab} = \frac{4}{\pi} G^2 \frac{m_e E_{lab}}{2} \text{ cresce linermente con } E_{lab} : \frac{\sigma_{lab}}{E_{lab}} = 1.5 \cdot 10^{-42} \text{ cm}^2 \text{GeV}^{-1}$$

Più probabile l'interazione tra neutrino e nucleone di massa M (puntiforme?)

$$\sigma_{lab} = \frac{4}{\pi} G^2 \frac{ME_{lab}}{2} \Longrightarrow \frac{\sigma_{lab}}{E_{lab}} = 0.3 \cdot 10^{-38} cm^2 GeV^{-1}$$

L'interazione con i nucleoni è più probabile perchè a parità di energia incidente dei neutrini s= $2ME_{lab}$ a causa del fatto M~2000 m_e è 2000 volte più grande.

Neutrini e antineutrini

Consideriamo l'ampiezza del processo: $v_{\mu} + e^- \rightarrow \mu^- + v_e$ $|M|_{\nu}^2 = 2\left(\frac{g_W}{M_W}\right)^4 (p_1 \cdot p_2)(p_3 \cdot p_4) == 64G^2(p_1 \cdot p_2)(p_3 \cdot p_4)$

Tale ampiezza vale anche per l'interazione $v_e + e^- \rightarrow e^- + v_e$ Consideriamo ora $\overline{v}_e + e^- \rightarrow e^- + \overline{v}_e$ (o anche $\overline{v}_e + e^- \rightarrow \mu^- + \overline{v}_\mu$) crossing

Decadimento $\pi^- \rightarrow l^- \overline{\nu_e}$ → Corrente debole leptonica corrente debole adronica con correzioni per interazioni forti dei quark $\underbrace{\frac{u}{\pi^{-} p}}_{W} \frac{d}{M} = \frac{g_{W}^{2}}{8M_{W}^{2}} \left[\overline{u}(3)\gamma_{\mu}(1-\gamma_{5})v(2) \right] F^{\mu} \qquad F^{\mu} = \text{fattore di forma:} \\ \text{Accoppiamento } \pi/W \\ \text{Unica possibilità: } \mathbf{F}^{\mu} = \mathbf{f}_{\pi} \mathbf{p}_{\mu} \operatorname{con} \mathbf{f}_{\pi} \text{ uno scalare } (\mathbf{m}_{\pi} ?)$ Modulo quadro di M e somma sugli spin finali (Griffiths): $|M|^{2} = \frac{1}{8} \left[f_{\pi} \left(\frac{g_{W}}{M_{W}} \right)^{2} \right] \left\{ 2(pp_{2})(pp_{3}) - p^{2}(p_{2}p_{3}) \right\} = (m_{\nu} = 0) = \frac{1}{8} \left[f_{\pi} \left(\frac{g_{W}}{M_{W}} \right)^{2} \right]^{4} \frac{1}{2} m_{l}^{2} \left[m_{\pi}^{2} - m_{l}^{2} \right]$ regola d'oro nel c.m. $(1 \rightarrow 2 + 3)$: $\Gamma = \frac{1}{8\pi m_{1}} \left| M \right|^{2} \frac{\left| \vec{p}_{2} \right|^{2}}{m_{1}}$ $con \left| \vec{p}_{2} \right| = funzione \text{ triangolare} = \frac{1}{2m_{1}} \left[m_{1}^{4} + m_{2}^{4} + m_{3}^{4} - 2m_{2}^{2}m_{3}^{2} - 2m_{1}^{2}m_{2}^{2} - 2m_{1}^{2}m_{3}^{2} \right]^{\frac{1}{2}}$

$$\Rightarrow \Gamma_{\pi} = \frac{f_{\pi}^2}{\pi m_{\pi}^3} \left[\frac{g_W}{4M_W} \right]^4 m_l^2 \left[m_{\pi}^2 - m_l^2 \right]^2$$

$$f_{\pi} = (?) = m_{\pi} \cos \theta_{C}; \text{G}^{2} = 8 \left[\frac{g_{W}}{4M_{W}} \right]^{4}; m_{\pi} = 140 \text{MeV}, m_{l} = m_{\mu} = 106 \text{MeV}, \theta_{C} = 13^{\circ}$$
$$\Gamma = 3.13 \cdot 10^{-17} \text{ GeV}; \frac{1}{\Gamma} = 2.2 \cdot 10^{-8} \text{ s}; \text{misurato} \frac{1}{\Gamma} = 2.6 \cdot 10^{-8} \text{ s}$$

Osservazioni:

-L'assunzione $f_{\pi} = m_{\pi} \cos \theta_{C}$ è arbitraria;

$$\frac{\Gamma(\pi^- \to e^- \overline{\nu}_e)}{\Gamma(\pi^- \to \mu^- \overline{\nu}_\mu)} = \frac{m_e^2}{m_\mu^2} \frac{(m_\pi^2 - m_e^2)^2}{(m_\pi^2 - m_\mu^2)^2} = 1.28 \cdot 10^{-4} (\exp .: 1.22 \cdot 10^{-4})$$

Lo spazio delle fasi $R_2 = \frac{m_{\pi}^2 - m_l^2}{2m_{\pi}^2} \pi (R_2 = \int \frac{d\vec{p}_2}{2E_2(2\pi)^3} \frac{d\vec{p}_3}{2E_3(2\pi)^3})$ avrebbe favorito l'elettrone : $\frac{R_2^e}{R_2^\mu} = \frac{m_{\pi}^2 - m_e^2}{m_{\pi}^2 - m_{\mu}^2} = 2.3$

L'abbattimento del decadimento elettronico viene dall'elemento di matrice:

L'antineutrino è autostato dell'elicità (+1) e l'elettrone è "costretto"ad avere l'elicità"sbagliata" (+1) la cui probabilità è $P(\lambda = +1) = 1 - \beta_{e^-} = \frac{2m_e^2}{m_\pi^2 + m_e^2}$ sfavorito rispetto al muone:

Analogamente per il decadimento: $K^- \rightarrow \mu^- \overline{\nu}_{\mu}$ K-

$$\left\{ \underbrace{\overset{s}{\overbrace{u}}}_{u}^{u} \underbrace{\overset{\mu}{\overbrace{v_{u}}}}_{v_{u}}^{u} \underbrace{\overset{\mu}{\overbrace{v_{u}}}}_{v}^{u} \underbrace{\overset{\mu}{\overbrace{v_{u}}}}_{v} \underbrace{\overset{\mu}{\overbrace{v_{u}}}}_{v} \underbrace{\overset{\mu}{\overbrace{v_{u}}}}_{v} \underbrace{\overset{\mu}{\overbrace{v_{u}}}}_{v} \underbrace{\overset{\mu}{\overbrace{v}}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{v}}_{v} \underbrace{v}}_{v} \underbrace{\overbrace{v}}_{v} \underbrace{v}}_{v} \underbrace{v$$

$$\Rightarrow \Gamma_{K} = \frac{G^{2} \sin^{2} \theta_{C} f_{K}^{2}}{8\pi} \frac{1}{m_{K}^{3}} m_{\mu}^{2} [m_{K}^{2} - m_{\mu}^{2}]^{2}$$

Torniamo al decadimento del π : $\Gamma_{\pi} = \frac{G^2 \cos^2 \theta_C}{8\pi} \frac{1}{m_{\pi}} m_{\mu}^2 \left[m_{\pi}^2 - m_{\mu}^2 \right]^2 (f_{\pi} = m_{\pi} \cos \theta_C)$

Simmetria di crossing $\mu^+ \to \pi^+ \overline{\nu}_{\mu}$ Vietata però dallo spazio delle fasi. Ma per il τ (m_{τ} ~ 1.800 GeV) è possibile: $\tau^+ \to \pi^+ \overline{\nu}_{\tau}$

Nella Γ_{π} invertiamo la massa del pione con quella del leptone:

Attenzione: devo fare anche la media sugli spin iniziali: $\Gamma_{\tau} \rightarrow \frac{1}{2}\Gamma_{\tau} = 2.8 \cdot 10^{-13} GeV$

Ma $\tau^+ \to \pi^+ \overline{\nu}_{\mu}$ è solo uno dei canali di decadimento possibili (B.R. 11%) $(\tau \to e \nu \nu, \tau \to \mu \nu \nu, \tau \to \rho \nu, \tau \to \pi \pi \pi \nu,...)$ $\Gamma_{tot} = \frac{\Gamma_{\pi}}{B.R.} = 2.5 \cdot 10^{-12} GeV \Rightarrow \tau_{\tau} = \frac{1}{\Gamma_{tot}} = 6.57 \cdot 10^{-25} \cdot 0.4 \cdot 10^{-12} = 2.7 \cdot 10^{-13} s$ sperimentale $\tau_{\tau} = 2.9 \cdot 10^{-13} s$

Matrice di Cabibbo Kobayashi Maskawa (CKM)

1973: generalizzazione della teoria di Cabibbo con 3 doppietti di quark: almeno 3 generazioni sono necessarie per introdurre la violazione di CP.

La matrice V ha 9 elementi complessi:

 $\begin{pmatrix} d \\ s \\ b' \end{pmatrix} = V \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$ 18 numeri: ma è unitaria: $V_{\alpha\beta}^{+}V_{\beta\alpha} = \delta_{\alpha\beta} (9 \text{ equazioni}) \Rightarrow 9 \text{ elementi}$ Fase arbitraria per ciascun campo: $0.3 \times 2^{-3} \mod V \Rightarrow \text{ inversions per une face}$ $9-3\times 2=3$, ma V è invariata per una fase comune: 3+1=4 elementi indipendenti

Forma canonica (Kobayashi Maskawa) (tre angoli θ_1 , θ_2 , θ_3 , + fattore di fase δ)

$$V = \begin{bmatrix} c_1 & s_1c_1 & s_1s_3 \\ -s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2c_3 + s_2c_3e^{i\delta} \\ -s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta} \end{bmatrix} \quad c_i = \cos\theta_i$$

N.B. La V non è predicibile ma i suoi elementi sono estraibili dai dati sperimentali:

V _{ii}	CKM entry	Value	Source		
IJ	V _{ud}	0.9740 ± 0.0005	Nuclear β decay		
		0.9731 ± 0.0015	$n \to p e^- \overline{v}_e$		
		0.9739 ± 0.0005			
	$ V_{us} $	0.2196 ± 0.0026	$K \to \pi e^- \overline{\nu}_e$		
	V _{cd}	0.224 ± 0.016	$vd \rightarrow cX$ –		
	$ V_{cs} $	1.04 ± 0.16	$D \rightarrow \overline{K} e^+ v_e$		
		0.97 ± 0.11	$W^+ \rightarrow c \overline{s}$		
2	$ V_{cb} $	0.0421 ± 0.0021	$B \to D^* l \overline{\nu}_l$		
		0.0414 ± 0.0011	$b \rightarrow c l \overline{v}_l$		
		0.0416 ± 0.0020			
ō	$ V_{ub} $	0.0033 ± 0.0005	$B \to \rho l \overline{\nu}_l$		
0		0.0041 ± 0.0006	$b \rightarrow u \ l \ \overline{v}_l$		
N		0.0036 ± 0.0005			
	$\left V_{tb}\right / \sqrt{\sum_{q} \left V_{tq}\right ^2}$	$0.97^{+0.16}_{-0.12}$	$t \to bW/qW$		
$\sum (x ^2 + x ^2) = 2020 + 0.07$					
$ + V_{us} + V_{ub} $	$= 0.9967 \pm 0.0021$	$\sum_{j} \left(\left {^{r} uj} \right + \right)$	$ c_j = 2.039 \pm 0.02$		

Valori sperimentali

$$V_{CKM} = \begin{vmatrix} V_{ud} = 0.975 & V_{us} = 0.221 & V_{ub} = 0.005 \\ V_{cd} = 0.221 & V_{cs} = 0.974 & V_{cb} = 0.04 \\ V_{td} = 0.01 & V_{ts} = 0.041 & V_{tb} = 0.999 \end{vmatrix}$$
 L'unitarietà connette valori differenti,es.
$$\begin{vmatrix} V_{cd} \\ V_{cd} \\ V_{cd} \\ V_{cs} \\ V_{cs} \\ V_{cb} \\ V_{cb}$$

La matrice è quasi diagonale;

Gli elementi fuori diagonale delle III riga e della III colonna sono molto piccoli: la III generazione (t,b) è quasi disaccoppiata quindi la vita media dei b è "lunga" (~ 10^{-12} s) a dispetto del grande spazio delle fasi disponibile (m_b⁵).

Ci sono altre generazioni di doppietti di quark?

Generalizzazione a n generazioni:

$$\frac{n(n-1)}{2} \operatorname{angoli}; \ \frac{(n-1)(n-2)}{2} \operatorname{fasi.}$$

Ma abbiamo buone ragioni per pensare che ci siano solo 3 generazioni...

I neutrini per studiare la struttura della materia

Le funzioni di struttura W_1 , W_2 , W_3 sono funzioni di due variabili cinematiche indipendenti ad es.(Q^2 ,v). Anche in questo caso, se l'interazione di neutrini è con i componenti elementari del nucleone (i quark) vale lo scaling di Bjorken:

 $MW_{1}(Q^{2}, \nu) \rightarrow F_{1}(x); \qquad x = \frac{-q^{2}}{2q \cdot p} \xrightarrow{LAB} \frac{-q^{2}}{2M(E-E')} \\ \nu W_{2}(Q^{2}, \nu) \rightarrow F_{2}(x) \text{ e } F_{2} = 2xF_{1}; \qquad y = \frac{q \cdot p_{2}}{p_{1} \cdot p_{2}} \xrightarrow{LAB} \frac{E-E'}{E}$

$$\frac{d\sigma}{dxdy} = \frac{G^2s}{2\pi} \left\{ F_2 \frac{1 + (1 - y)^2}{2} + xF_3 \frac{1 - (1 - y)^2}{2} \right\}$$
Per un $\overline{\nu}$ incidente (invece di un ν) $F_3 \rightarrow -F_3 (\gamma_5 \rightarrow -\gamma_5)$: proiettore destrorso $\frac{(1 + \gamma_5)}{2}$
Un po' di cinematica:
interazione neutrino-quark:
 $\overline{i}, \overline{s}$ variabili di Mandelstam nel c.m. (vq)
 $\widehat{\theta}$ angolo di scattering nel c.m. (vq)
 $\overline{\theta}$ angolo di scattering nel c.m. (vq)
 $\overline{\mu}$ p_3 $- \frac{q}{p_2 - xp}$ q
 $\overline{s} = (xp + p_1)^2 \approx x2p_1p = xs (trascurando le masse)$
 $\overline{p_2 = xp}$ q
Torniamo a: $\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$ o anche $\nu_{\mu} + d \rightarrow \mu^- + u$
 $\frac{d\sigma}{d\Omega} = (c.m.) = \frac{1}{2} \left[\frac{g_{\mu}^2 E}{4\pi M_{\mu}^2} \right]^2 = \frac{G^2(2E)^2}{4\pi^2} = \frac{G^2s}{4\pi^2}$ $\frac{d\sigma}{dy} = 2\frac{d\sigma}{d\cos\theta} = 4\pi \frac{d\sigma}{d\Omega} = \frac{1}{\pi} G^2s$ (uniforme in y)
Andiamo nel laboratorio dove s=2ME:
N.B. Sono passato dal c.m. al lab. conservando la uniformita in y perchè y è invariante di Lorentz;
Non è vero per d\sigma/d\Omega

Nel caso di antineutrino-quark o neutrino-antiquark uno scattering a 180° è impossibile per la conservazione del momento angolare $\Rightarrow \sigma(vq) = \sigma(\overline{vq}) = 3\sigma(\overline{vq}) = 3\sigma(v\overline{q})$

T ,	•	•	. •	•	1
Interaz	10n	i neui	trin	1-011	ark
Interal	1011	I IIVu		u yu	iui ix

Interazioni neutrini-quark	$s \rightarrow s = xs$			
Pr ocesso elementare	$\frac{\frac{d\sigma}{dy}}{\frac{G^2 xs}{\pi}}$	$\frac{\sigma}{\frac{G^2 xs}{\pi}}$		
$v_{\mu}d \rightarrow u\mu^{-}, \overline{v_{\mu}}\overline{d} \rightarrow \overline{u}\mu^{+}$	$\cos^2 \theta_{_C}$	$\cos^2 \theta_C$		
$v_{\mu}s \rightarrow u\mu^{-}, \overline{v_{\mu}s} \rightarrow \overline{u}\mu^{+}$	$\sin^2\theta_{c}$	$\sin^2 \theta_C$		
$v_{\mu}\overline{u} \rightarrow \overline{d}\mu^{-}, \overline{v}_{\mu}u \rightarrow d\mu^{+}$	$(1 - y)^2 \cos^2\theta_C$	$1/3 \cos^2 \theta_C$		
$v_{\mu}\overline{u} \rightarrow \overline{s}\mu^{-}, \overline{v}_{\mu}u \rightarrow s\mu^{+}$	$(1 - y)^2 sin^2 \theta_c$	$1/3 \sin^2 \theta_c$		
$v_{\mu}u \rightarrow d\mu^{+}, \overline{v_{\mu}}\overline{u} \rightarrow \overline{d}\mu^{-}$	0	0	NL	
$v_{\mu}u \rightarrow s\mu^{+}, \overline{v_{\mu}}\overline{u} \rightarrow \overline{s}\mu^{-}$	0	0 }	Numero ieptonico	
$v_{\mu}u \rightarrow d\mu^{-}, \overline{v_{\mu}}\overline{u} \rightarrow \overline{d}\mu^{+}$	0	0	Carias alattrias	
$v_{\mu}u \rightarrow s\mu^{-}, \overline{v_{\mu}}\overline{u} \rightarrow \overline{s}\mu^{+}$	0	0 5	Carrea elettrica	

Lo scattering di neutrino su nucleone può essere scritto come sovrapposizione incoerente di scattering su quark e antiquark pesato con la sezione d'urto e la densità di quark e antiquark.

$$\frac{d\sigma}{dxdy} = \frac{2G^2ME}{\pi} \{ xQ(x) + x\overline{Q}(x)(1-y)^2 \} (\cos\theta_C = 1, \ 2MEx = \hat{s})$$

$$\frac{d\sigma}{dxdy} = \frac{G^22ME}{2\pi} \{ (F_2(x) + xF_3(x)) + (F_2(x) - xF_3(x))(1-y)^2 \}$$

Per cui

$$F_{2}^{\nu N}(x) = 2x \left[Q(x) + \overline{Q}(x) \right]$$
$$x F_{3}^{\nu N}(x) = 2x \left[Q(x) - \overline{Q}(x) \right]$$

Separando tra neutroni e protoni e assumendo $d^n(x) = u(x), u^n(x) = d(x)$ $F_2^{\nu p}(x) = 2x[d(x) + \overline{u}(x)]$ $F_2^{\nu n}(x) = 2x[u(x) + \overline{d}(x)] \implies$ Le funzioni di struttura di neutrino sono $F_3^{\nu p}(x) = 2[d(x) - \overline{u}(x)] \implies$ sensibili al contenuto di antiquark di protone $F_3^{\nu n}(x) = 2[u(x) - \overline{d}(x)]$ Se il protone è (uud) l'eccesso di u rispetto a antiu è 2 e quello di d rispetto a antid è 1:

$$\int_{0}^{1} dx \left[u(x) - \overline{u}(x) \right] = 2; \int_{0}^{1} dx \left[d(x) - \overline{d}(x) \right] = 1$$

Su targhetta isoscalare: 1

$$3 = \int_{0}^{1} dx \left[u(x) + d(x) - \overline{u}(x) - \overline{d}(x) \right] = \frac{1}{2} \int_{0}^{1} dx \left[F_{3}^{\nu p} + F_{3}^{\nu n} \right] = \int_{0}^{1} dx F_{3}^{\nu N}$$

Regola di somma di Gross-Llewellyn Smith; sperim. $= 3.2 \pm 0.5$

Nel caso elettromagnetico: ($F_2(x) = x \sum_i Q_i^2 f_i(x)$):

$$F_{2}^{eN} = \frac{1}{2}(F_{2}^{ep} + F_{2}^{en}) = \frac{1}{2}x\left\{\frac{4}{9}\left[u(x) + \overline{u}(x)\right] + \frac{1}{9}\left[d(x) + \overline{d}(x) + s(x) + \overline{s}(x)\right] + \frac{4}{9}\left[d(x) + \overline{d}(x)\right] + \frac{1}{9}\left[u(x) + \overline{u}(x) + s(x) + \overline{s}(x)\right]\right\} = \frac{5}{18}x(u + \overline{u} + d + \overline{d}) + \frac{1}{9}x(s + \overline{s})$$

Nel caso di interazioni di neutrino:

$$F_{2}^{\nu N} = \frac{1}{2} \left[F_{2}^{\nu p} + F_{2}^{\nu n} \right] = x(u + d + \overline{u} + \overline{d})$$

Trascurando il contributo degli s, su targhetta isoscalare Sensibile alla carica elettrica dei quark.

$$\frac{F_2^{\nu N}}{F_2^{e N}} = \frac{18}{5}$$

Interazioni DIS di antineutrini

Nel caso di interazioni v N, $F_3 \rightarrow -F_3$ (1- γ_5)

$$\frac{d\sigma}{dxdy}(\overline{\nu}N) = \frac{G^2 2ME}{2\pi} \left\{ (F_2(x) - xF_3(x)) + (F_2(x) + xF_3(x))(1-y)^2 \right\}$$

Ora la distribuzione in y è piatta sugli antiquark e va come $(1-y)^2$ sui quark:

 $\frac{d\sigma}{dxdy}(\overline{\nu}N) = \frac{2G^2ME}{\pi} \left\{ x\overline{Q}(x) + xQ(x)(1-y)^2 \right\}$ Da cui ancora: $F_2^{\overline{\nu}N}(x) = 2x \left[\overline{Q}(x) + Q(x)\right] \text{se N} = p$ $xF_3^{\overline{\nu}p}(x) = 2x \left[\overline{d}(x) + u(x)\right]$ Allora: $I_A \equiv \int_0^1 \frac{F_2^{\overline{\nu}p} - F_2^{\nu p}}{x} dx = 2\int \left\{ \left[\overline{d}(x) - d(x)\right] + \left[u(x) - \overline{u}(x)\right] \right\} dx = 2$

Regola di somma di Adler: sperimentalmente $I_A=2.202\pm0.4$ N.B. La misura è difficile: su targhetta isoscalare (o approssimata) $I_A \sim 0$

Correnti deboli neutre

Mediatore un bosone massivo neutro: Z₀

Il fermione iniziale è eguale a quello finale:

 $\mu^{-} \not\models e^{-} Z_0; s \not\models d Z_0$

1973: eventi:

 Z_0

 $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ evento con un elettrone singolo

 $\overline{\nu}_{\mu}N \rightarrow \overline{\nu}_{\mu}N; \ \nu_{\mu}N \rightarrow \nu_{\mu}N \text{ con adroni}$

Le sezioni d'urto per processi deboli neutri sono circa 1/3 di quelli equivalenti di corrente carica e esiste anche un'ulteriore complicazione la corrente non è pura (V-A) ($\gamma_{\mu}(1-\gamma_{5})$):

$$-i\frac{g_Z}{2}\gamma_{\mu}\left[C_V^f - C_A^f\gamma_5\right]$$
 Con i coefficienti C_V e C_A che dipendono dal tipo f
di fermione in gioco

Occorre un modello elettrodebole unificato (GWS): si introduce un nuovo paraametro: θ_W che lega g_W, g_Z e e: $g_e = e; g_W = \frac{g_e}{\sin \theta_W}; g_Z = \frac{g_e}{\sin \theta_W} \cos \theta_W$

I leptoni e i quark sono organizzati in doppietti di isospin debole (T,T₃):

$$T_{3} = 1/2 \qquad \begin{bmatrix} v_{e} \\ e \end{bmatrix} \begin{bmatrix} v_{\mu} \\ \mu \end{bmatrix} \begin{bmatrix} v_{\tau} \\ \tau \end{bmatrix} \begin{bmatrix} u \\ d \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} \begin{bmatrix} t \\ b \end{bmatrix}$$

$$C_{V}^{i} = T_{3} - 2q_{i} \sin^{2} \theta_{W}; ex: C_{V}^{v} = \frac{1}{2}, \ C_{V}^{e^{-}} = -\frac{1}{2} + 2\sin^{2} \theta_{W}; \ C_{V}^{u} = -\frac{1}{2} - \frac{4}{3} \sin^{2} \theta_{W}, \ C_{V}^{d} = -\frac{1}{2} + \frac{2}{3} \sin^{2} \theta_{W}$$
$$C_{A}^{i} = T_{3}^{i}; ex. \ C_{A}^{v} = C_{A}^{u} = \frac{1}{2}; \ C_{A}^{e} = C_{A}^{d} = -\frac{1}{2}$$

Anche M_W e M_Z sono connesse: $M_W = M_Z \cos \theta_W$; $g_W^2 = \frac{e^2}{\sin^2 \theta_W} = \frac{4\pi \alpha}{\sin^2 \theta_W}$, $\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8M_W^2} \Rightarrow$

$$\Rightarrow M_W = \left[\frac{\pi\alpha}{G_F \sin^2 \theta_W \sqrt{2}}\right]^{1/2} \approx 80 \,\text{GeV}$$

Produciamo lo Z: $e^+e^- \rightarrow Z \rightarrow f\bar{f}; q\bar{q} \rightarrow Z \rightarrow f\bar{f}$ (in int erazioni adroniche) $p_3\bar{f}$ f p_4 Z q f h $M = \frac{-g_Z}{4(q^2 - M_Z^2)} \left[\overline{u}(4)\gamma^{\mu}(C_V^f - C_A^f\gamma^5)v(3) \right]$ $p_1 e^- e^+ p_2$ $\left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{M_Z^2} \right] \left[\overline{v}(2)\gamma^{\nu}(C_V^e - C_A^e\gamma^5)u(1) \right]$ Come in $e^+e^- \rightarrow \gamma \rightarrow \mu^+\mu^-$

 $|M|^{2} = \frac{1}{2} \left[\frac{g_{Z}^{2}}{q^{2} - M_{Z}^{2}} \right]^{2} \left\{ (C_{V}^{f2} + C_{A}^{f2})(C_{V}^{e2} + C_{A}^{e2}) \cdot \left[(p_{1} \cdot p_{3})(p_{2} \cdot p_{4}) + (p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) \right] + \left\{ 4C_{V}^{f}C_{A}^{f}C_{V}^{e}C_{A}^{e} \left[(p_{1} \cdot p_{3})(p_{2} \cdot p_{4}) - (p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) \right] \right\}$ $p_{3} \quad p_{1} = [E, \vec{p}_{1}], p_{2} = [E, -\vec{p}_{1}], p_{3} = [E, \vec{p}_{3}], p_{4} = [E, -\vec{p}_{3}]$ $q^{2} = [2E]^{2} \quad \text{Trascurando le masse:}$ Trascurando le masse: \mathbf{p}_1 p_2 $|M|^{2} = \left[\frac{g_{Z}^{2}E^{2}}{(2E)^{2} - M_{Z}^{2}}\right]^{2} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - 8C_{V}^{f}C_{A}^{f}C_{V}^{e}C_{A}^{e}\cos\theta\}$ $\frac{d\sigma}{d\Omega} = \left(\frac{1}{8\pi}\right)^{2} \frac{|M|^{2}}{(E_{1} + E_{2})^{2}} \frac{|\vec{p}_{f}|}{|\vec{p}_{i}|} = \frac{g_{Z}^{4}E^{2}}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \{(C_{V}^{f2} + C_{A}^{f2}) \cdot (C_{V}^{e2} + C_{A}^{e2})(1 + \cos^{2}\theta) - \frac{1}{16\pi [(2E)^{2} - M_{Z}^{2}]^{2} + (M_{Z}\Gamma_{Z})^{2}}{(M_{Z}\Gamma_{Z})^{2}} \}$

$$\sigma = \int_{-1}^{1} \frac{d\sigma}{d\Omega} d\cos\theta = \frac{g_Z^4 E^2 (C_V^{f2} + C_A^{f2}) (C_V^{e2} + C_A^{e2})}{48\pi [(2E)^2 - M_Z^2]^2 + (M_Z \Gamma_Z)^2}$$

Scattering elastico $v_{\mu}e^{-} \rightarrow v_{\mu}e^{-}$

Z $Z \rightarrow P_4$ t Stessa ampiezza dell'annichilazione e⁺e⁻ \rightarrow ff con p₂ \Leftrightarrow - p₃ e C_A^l=1/2, C_V^l=1/2 (l=v)

$$|M|^{2} = \frac{1}{2} \left[\frac{g_{Z}^{2}}{M_{Z}^{2}} \right]^{2} \left\{ (C_{V}^{2} + C_{A}^{2}) \cdot \left[(p_{1} \cdot p_{2})(p_{3} \cdot p_{4}) + (p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) \right] + \left\{ + C_{V}C_{A} \left[(p_{1} \cdot p_{2})(p_{3} \cdot p_{4}) - (p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) \right] \right\}$$

Propagatore semplificato

$$|M|^{2} = \frac{1}{2} \left[\frac{g_{Z}^{2}}{M_{Z}^{2}} \right]^{2} \left\{ (C_{V} + C_{A})^{2} \cdot (p_{1} \cdot p_{2})(p_{3} \cdot p_{4}) + (C_{V} - C_{A})^{2}(p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) \right\}$$

Andiamo nel c.m. $p_1 = [E, \vec{p}_1], p_2 = [E, -\vec{p}_1], p_3 = [E, \vec{p}_3], p_4 = [E, -\vec{p}_3]$

 $\frac{d\sigma}{d\Omega} = \left(\frac{1}{8\pi}\right)^2 \frac{|M|^2}{(E_1 + E_2)^2} \frac{|\vec{p}_f|}{|\vec{p}_i|} = \frac{2g_Z^4 E^2}{\pi^2 [4M_Z]^4} [(C_V + C_A)^2 + (C_V - C_A)^2 \cos^4 \frac{\theta}{2}]$

Nel caso di $v_{\mu}e^{-} \rightarrow \mu^{-}v_{e}$ corrente carica era indipendente da θ

$$\sigma_{el}^{ve} = \frac{2}{3\pi} \left(\frac{g_Z}{2M_Z} \right)^4 E^2 (C_V^2 + C_A^2 + C_V C_A)$$

$$se: C_{V}^{e} = -\frac{1}{2} + 2\sin^{2}\theta_{W}, C_{A}^{e} = -\frac{1}{2} \qquad \sigma_{el}^{ve} = \frac{2}{3\pi} \left(\frac{g_{Z}}{2M_{Z}}\right)^{4} E^{2} (3/4 - 2\sin^{2}\theta_{W} + 4\sin^{4}\theta_{W})$$

Da paragonare a
$$\sigma(v_{\mu}e \to \mu^{-}v_{e}) = \frac{1}{8\pi} \left(\frac{g_{W}}{M_{W}}\right)^{4} E^{2}$$

 $con \quad g_{Z} = \frac{g_{W}}{\cos \theta_{W}}; M_{Z} = \frac{M_{W}}{\cos \theta_{W}} \qquad \qquad \frac{\sigma(ve \to ve)}{\sigma(ve \to \mu v_{e})} = \frac{1}{4} - \sin^{2} \theta_{W} + \frac{4}{3} \sin^{4} \theta_{W}$

Sensibile all'angolo di Weinberg: se $sin^2\theta_W = 0.23$

$$\frac{\sigma(ve \to ve)}{\sigma(ve \to \mu v_e)} \equiv \frac{\sigma^{NC}}{\sigma^{CC}} = 0.09$$
 In accordo con i dati sperimentali

 $\frac{\sigma^{CC}}{\sigma^{CC}}$

?

Esercizio: se l'interazione è su nucleoni (quark) quanto vale

Larghezze parziali dei bosoni W,Z

$$|M|^2 = \frac{g_Z^2}{3} \left[(C_V^{f^2} + C_A^{f^2}) \right] M_Z^2; \text{ abbiano trascurato le masse finali : } |\vec{p}_2| = \frac{M_Z}{2}$$

$$\Gamma = \frac{1}{8\pi} \frac{1}{M_{Z}} |M|^{2} \frac{|\vec{p}_{2}|}{M_{Z}} = \frac{1}{48} \frac{g_{Z}^{2}}{\pi} [C_{A}^{f2} + C_{V}^{f2}] M_{Z} = \frac{1}{48\pi} \frac{g_{W}^{2} M_{Z}}{\cos^{2} \theta_{W}} [C_{A}^{f2} + C_{V}^{f2}] = \frac{G}{6\sqrt{2\pi}} \frac{M_{W}^{2}}{\cos^{2} \theta_{W}} M_{Z} [C_{A}^{f2} + C_{V}^{f2}] \Rightarrow \frac{1}{6\sqrt{2\pi}} \frac{G}{6\sqrt{2\pi}} M_{Z}^{3} [C_{A}^{f2} + C_{V}^{f2}]$$

Sensibile ai coefficienti $C_A^{f} e C_V^{f}$

Con gli opportuni $C_A e C_V$ dei vari fermioni:

$$\Gamma(v\bar{v}) = \frac{GM_Z^3}{6\sqrt{2}\pi} \qquad \left[\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 \right] \qquad \text{COLORE} = 166.2 \text{ MeV} \\ \Gamma(l\bar{l}) = \qquad \left[\left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2} + 2\sin^2\theta_W\right)^2 \right] \qquad = 83.5 \qquad \text{MeV} \\ \Gamma(u\bar{u},c\bar{c}) = \qquad \left[\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2} - \frac{4}{3}\sin^2\theta_W\right)^2 \right] \qquad \times 3 = 295 \qquad \text{MeV} \\ \Gamma(d\bar{d},s\bar{s},b\bar{b}) = \qquad \left[\left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W\right)^2 \right] \qquad \times 3 = 381 \qquad \text{MeV} \end{cases}$$

La larghezza totale dello Z dipende dal numero di famiglie dei fermioni: per 3 famiglie di fermioni: $\Gamma_Z(\text{tot})=2.478 \text{ GeV}(\text{exp. } 2.490\pm0.007)$ Un'ulteriore famiglia leptonica (v_X ,X) contribuirebbe con 166.2 MeV.

Il B.R. del canale leptone/antileptone (ex. e⁺ e⁻) che è misurabile "facilmente" è solo il 3.3% (83.5 MeV/2478 MeV).

Il canale "invisibile" $\Gamma(Z \to \nu \overline{\nu})$ è circa il 20%.

$$\sigma(e^+e^- \to Z \to q\overline{q}(adroni)) = \sigma(e^+e^- \to Z \to \mu^+\mu^-) \frac{\Gamma_{q\overline{q}}}{\Gamma_{\mu^+\mu^-}} =$$

 $1.74 \cdot 10^{-33} \frac{1733}{83.5} \approx 36 \cdot 10^{-33} cm^2$

Ci sono altri v oltre a $v_e v_\mu v_\tau$?

La distribuzione di massa di una risonanza è descritta da una Breit e Wigner:

$$P(m) = \frac{1}{2\pi} \frac{\Gamma}{\frac{\Gamma^{2}}{4} + (m - m_{0})^{2}}$$

Dove m_0 è la massa della particella e Γ la sua larghezza totale: somma di tutte le larghezze parziali in tutti i possibili canali di decadimento:

$$\Gamma = \frac{1}{\tau} = 6.58 \cdot 10^{-22} MeV \cdot s / \tau$$

La larghezza totale dello Z: Γ_{Z}

$$\Gamma_{Z} = \Gamma(e^{+}e^{-}) + \Gamma(\mu^{+}\mu^{-}) + \Gamma(\tau^{+}\tau^{-}) + \Gamma(u\overline{u}) + \Gamma(d\overline{d}) + \Gamma(s\overline{s}) + \Gamma(c\overline{c}) + \Gamma(b\overline{b}) + N_{\nu} \times \Gamma(\nu\overline{\nu})$$

 N_v numero di tipi di neutrini (con $m_v < Z/2$) ($\Gamma(v\bar{v}) = 166.2 \text{ MeV se } m_v = 0$) Misura della larghezza dello Z \Leftrightarrow misura del numero di neutrini Sperimentalmente si costruisce la Breit/Wigner facendo uno scanning in energia di $e^+e^- \rightarrow Z \rightarrow X$ e misurando la sezione d'urto di $Z \rightarrow X$ attorno alla massa dello Z. La precisione con cui è conosciuta l'energia dei fasci è qualche MeV ($<<\Gamma_z$)

Oppure si può scegliere un canale specifico ex:

 $e^+e^- \rightarrow Z \rightarrow q\overline{q} \rightarrow adroni$

La cui sezione d'urto in funzione di $E(e^+ e^-)$ è una Breit/Wigner proporzionale a:

Il calcolo delle larghezze parziali del W^{\pm} in coppie di leptoni è del tutto analogo a quello per lo Z.

$$\Gamma(W^{+} \rightarrow l^{+}v_{l}) = \frac{GM_{W}^{3}}{6\sqrt{2}\pi} \approx 226 \text{ MeV}$$

$$W^{+} = e, \mu, \tau$$

 σ_{\dots}

Nel caso di decadimento in coppie di quark dobbiamo inserire il fattore di colore e l'elemento di matrice di CKM:

$$\Gamma(W^+ \to u\overline{d}) = 3 \frac{GM_W^3}{6\sqrt{2}\pi} \left[|V_{ud}|^2 \right] \approx 707 \ MeV$$

$$\to c\overline{s} \qquad \Gamma_W(tot) \approx 2100 \ MeV \ (exp. 2.08 \pm 0.07 \ GeV)$$

 $\rightarrow tb$ VIETATO CINEMATICAMENTE

B.R. Nel canale leptonico "facile" (W⁺ \rightarrow l⁺ v) ora è più favorevole (~10%) che per lo Z Negli anni 80 e 90 è stato a lungo cercato $W^+ \rightarrow t\overline{b}$ dalla mancanza di questi eventi limite sulla massa del quark top: ex. UA(2) m_{top}> 69 GeV).

Come si misurano W e Z?

Collisioni leptoniche:

 $e^+e^- \rightarrow Z \rightarrow f\bar{f}(\sqrt{s} \approx M_Z \approx 90 \text{ GeV})$ Anelli di collisione e^+e^- con L=10³⁰-10³¹ cm⁻²s⁻¹ LEP, SLC in un anno (10⁷ s) N_Z ~ 10⁶.

 $\overline{\nu}\mu^- \to W^- \to \overline{\nu}\mu^-(\sqrt{s} \approx M_W \approx 80 \,\text{GeV})$ Impossibile un anello di collisione

Su bersaglio fisso deve essere: $\hat{s} \approx (M_W)^2 = x \cdot 2ME_v; (v_\mu d \rightarrow \mu^- u), x = 1/6 \Rightarrow E_v = 20 \text{ TeV}!$

Oppure $e^+e^- \rightarrow W^+W^- \text{ con } \sqrt{s} > 160 \text{ GeV}$ (ex a $\sqrt{s} = 200 \text{ GeV} \sigma = 12 \text{ pb}$)

 $\frac{\text{Collisioni adroniche (collisioni tra quark)}}{q\overline{q}(u\overline{u}, d\overline{d}, ..) \rightarrow Z \rightarrow f\overline{f}} (macchine di collisione p\overline{p}, ma anche pp) u\overline{d} \rightarrow W^+ \rightarrow l^+ v_l$

-Non tutta l'energia del fascio (p $\overline{o p}$) è utile per il processo elementare (lo è circa 1/6) -A differenza dei processi leptonici ci sono interazioni competitive: quelle forti.

ex. in $p\overline{p} \ a \ \sqrt{s} = 630 \ GeV$: $\sigma_{tot} \approx 60 \ mb$; $\sigma(W \rightarrow ev) \approx 60 \cdot 10^{-8} \ mb$

Bibliografia

- **D.Perkins**, "Introduction to high energy physics", quarta edizione Cambridge University Press, 1999;
- **D.Griffith**,"Introduction to elementary particles" Harper & Row, Publisher, New York, 1987;
- I.J.Aitchison, A.J.G.Hey, "Gauge theories in particle physics", Institute of physics 2003.
- L.B.Okun, "Leptons and quarks" North Holland pub.