Come si misurano le particelle

Molti piu' dettagli nel corso "Apparati sperimentali"

- Introduzione
- Misure di impulso. Misure in campo magnetico e sistemi di tracciatura
- Misure di energia: Calorimetri
- Identificazione delle particelle
- Sistemi di rivelatori: l'apparato sperimentale

Bibliografia

- Text books
 - C. Grupen, Particle Detectors, Cambridge University Press, 1996
 - G. Knoll, Radiation Detection and Measurement, 3rd Edition, 2000
 - W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd edition, Springer, 1994
 - R.S. Gilmore, Single particle detection and measurement, Taylor&Francis, 1992
 - W. Blum, L. Rolandi, Particle Detection with Drift Chambers, Springer, 1994
 - K. Kleinknecht, Detektoren f
 ür Teilchenstrahlung, 3rd edition, Teubner, 1992

Articoli di rivista

- Experimental techniques in high energy physics, T. Ferbel (editor), World Scientific, 1991.
- Instrumentation in High Energy Physics, F. Sauli (editor), World Scientific, 1992.
- Many excellent articles ca Nucl. Part. Sci.

Altro

- Review of particle physics, Phys Lett B592 (2004
- R. Bock, A. Vasilescu, Particle Data Briefbook http://www.cern.ch/Physics/ParticleDetector/BriefBook/
- Proceedings of detector conferences (Vienna VCI, Elba, IEEE)

. D.Green, The physics of particle detectors Cambridge University Press, 2000 Un esempio di evento da interazione di particella su bersaglio fermo esperimento NOMAD:

 $\nu_{\mu}+N \longrightarrow \mu^{-} + adroni$ Necessita'di:

misurare vertici primari e secondari identificare le particelle: muoni, elettroni, fotoni,pioni protoni, misurare energia e impulso di ciascuna particella

Reconstructed B-mesons in the DELPHI micro vertex detector

 $\tau_{\rm B} \approx 1.6 \text{ ps}$ $l = c \tau \gamma \approx 500 \ \mu \text{m} \cdot \gamma$

Esempio di interazione

 $e^+e^- \rightarrow B\overline{B}$

Il rivelatore ideale

interazioni a alta energia $(e^+e^-, ep, p\overline{p}, pp)$ \rightarrow produzione di molte particelle cariche, neutre, stabili e instabili, fotoni)

Il rivelatore "ideale dovrebbe fornire:

- piena copertura dell'angolo solido senza buchi buona segmentazione
- rivelazione,tracking e identificazione di "tutte" le particelle: carica, massa)
- misura dell'energia e dell'impulso
- risposta veloce senza tempi morti (alto rate)
- ovvie limitazioni da spazio, tecnologia, risorse

<u>le particelle sono misurate in quanto interagiscono</u> <u>con la materia che attraversano (i rivelatori)</u> Queste interazioni dipendono da molti processi fisici (soprattutto di carattere elettromagnetico) Il risultato finale osservato consiste nella **ionizzazione e nella eccitazione della materia**

Sistemi di tracciatura

*Ricostruzione delle traiettorie delle particelle cariche che depositano energia per ionizzazione.
*Ricostruzione dei vertici primari e secondari
*In campo magnetico: misura dell'impulso p delle particelle.
*Identificazione dei jet che vengono dalla frammentazione di quark e gluoni.

> *Massima efficienza e risoluzione spaziale. *minimo disturbo sulla particella

Camere a gas
 Rivelatori a semiconduttori (SI,Ge)
 Rivelatori a scintillazione (fibre)
 Emulsioni fotografiche

Risoluzioni ottenibili: fino al μm (emulsioni) ordinariamente 50-150 μm Misure di impulso

Misure di impulso

per N misure equidistanti si ottiene (R.L. Gluckstern, NIM 24 (1963) 381)

$$\frac{\sigma(p_T)}{p_T} \bigg|_{p_T}^{meas.} = \frac{\sigma(x) \cdot p_T}{0.3 \cdot BL^2} \sqrt{720/(N+4)} \qquad \text{(for N \ge \approx 10)}$$

ex: p_T=1 GeV/c, L=1m, B=1T, σ(x)=200μm, N=10

$$\frac{\sigma(p_T)}{p_T} \approx 0.5\%$$
 (s ≈ 3.75 cm)

D* (mesone (con charm) D eccitato, spin 1 in vece di 0): prodotto in interazioni di neutrini e decaduto

Esperimenti di collisione, potere analizzante

-Campo uniforme -Buon potere analizzante in avanti/indietro -Cattivo a grande angolo

-Campo tutto contenuto ma **disuniforme** ~ 1/r -Attraversamento materiale

-Campo uniforme -Buona analisi a grande angolo -problema ritorno del campo

Campi utilizzati tipicamente dell' ordine del T

Scattering coulombiano

una particella incidente con carica z interagisce con un nucleo di carica Z. La sezione d'urto differenziale e'

z

A

Scattering multiplo

Per materiali abbastanza spessi

 \rightarrow scattering multiplo trattabile com metodi statistici (Moliere)

Approssimatione
$$\theta_0 = \frac{13.6 MeV}{\beta cp} z \sqrt{\frac{L}{X_0}} \left\{ 1 + 0.038 \ln\left(\frac{L}{X_0}\right) \right\}$$

 X_0 e' la lunghezza di radiazione del mezzo (vedi dopo) (accurat. $\leq 11\%$ per 10⁻³ < L/X₀ < 100)

Piu' e' denso il materiale (Z) piu' X_0 e' piccolo e θ_0 grande Ex.: $X_0(C)=18$ cm; $X_0(Fe)=1.76$ cm; $X_0(Pb)=0.56$ cm. Alla precisione della misura dell'impulso contribuisce lo

scattering multiplo

Rivelazione di particelle cariche

Perdita di energia nella materia

 collisioni con gli elettroni degli atomi del materiale assorbente.
 Perdita di energia espressa per unita' di spessore:

Le collisioni con i nuclei trascurabili (m_e<<m_N).

se ħω, ħk grandi abbastanza <u>→ ionizza</u>zione

In opportune circostanze il fotone invece di ionizzare l'atomo puo' sfuggire libero nel mezzo.

Emissione di radiazione Cherenkov e di radiazione di Transizione (vedi poi).

formula Bethe e Block Perdita di energia per ionizzazione

$$\left\langle \frac{dE}{dx} \right\rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I^2} T^{\max} - \beta^2 - \frac{\delta}{2} \right]$$

 $x = \rho \cdot l = g / cm^2, dE \text{ in MeV}$

- dE/dx prima decresce ∝ 1/β² (piu' precisamente β^{-5/3}), fattore cinematico
- poi ha un minimo at βγ ≈ 4 (minimum ionizing particles, MIP)
 (dE/dx ≈ 1 2 MeV g⁻¹ cm²)
- quindi risale a causa del termine ln γ², risalita relativistica, attribuita all'espansione relativistica del campo E trasverso→ contributi da collisioni piu' distanti, utile a distinguere particelle.
- la risalita relativistica e' cancellata a alti γ da "effetti di densita", la polarizzazione del mezzo scherma da atomi piu' distanti.
 Parametrizzata da δ (dipende dal materiale) → Fermi plateau

< dE/dx> per muoni positivi in rame in funzione di $\beta\gamma = p/Mc \sin \theta$ ordini di grandezza in impulso (12 ordini di grandezza in energia cinetica).

Fluttuazioni nella ionizzazione: I raggi delta

Contatori proporzionali

numero di coppie ione/elettrone medio prodotte da un mip a pressione atmosferica

Anode Voltage (V)

 $N_{total} / cm \cong 5 \cdot Z$

In 1cm di argon 1"mip" crea ~120 coppie e/ione Il rumore dell'amplificatore e' ~ 1000 e ! $V = \frac{ne}{c} = 2\mu V; C \sim 10 pF$

total total

E' necessario moltiplicare il numero delle coppie e/ione.

Amplificazione in gas

Consideriamo il caso semplice di una geometria cilindrica:

Vicino il filo anodico il campo e' sufficiente mente alto (qualche kV/cm), in modo che e guadagnano abbastanza energia per ulteriore ionizzazione: il numero delle coppie e/ione aumenta esponenzialmente.

Camere a deriva

(primi studi: T. Bressani, G. Charpak, D. Rahm, C. Zupancic, 1969 prime applicazioni: A.H. Walenta, J. Heintze, B. Schürlein, NIM 92 (1971) 373)

Problemi durante lo spazio di drift

effetti di diffusione ?

St

La velocita' di deriva e' costante? In particolari condizioni v_D e' saturata e per gli elettroni vale $v_D \sim 5 \text{ cm/}\mu s$

La risoluzione e' limitata da effetti di diffusione: tipicamente $\sigma(x) \lesssim 1 \text{ mm}$

CAMERA CENTRALE (JET) DI UA2

(F. Bosi et al. NIM A283 (1989) 532)

Lunghezza : 1m 16 Settori angolari 13 piani di fili "staggerati di 200 micron per risolvere l'ambiguita' destra-sinistra

Molteplicita' media di tracce ~ 30

Lettura con flash ADC a 100 MHz

Risoluzione trasversa : 0.2 mm

Coordinata longitudinale attraverso divisione di carica; Risoluzione: 2 cm

Rivelatori a stato solido

Lunga tradizione come misuratori di energia (Si, Ge, Ge(Li)).

Oggi sono usati largamente come tracciatori di precisione

Alcuni numeri caratteristici per il silicio

- 4 elettroni di valenza separati di 1.12 eV dalla conduzione
- d E(e⁻-hole pair) = 3.6 eV, (≈ 30 eV per i rivelatori a gas).
- densita' alta (2.33 g/cm³) → Δ E/track length for

M.I.P.'s.: 390 eV/ μ m \approx 108 e-h/ μ m (in media)

- Alta mobilita': μ_e = 1450 cm²/Vs, μ_h = 450 cm²/Vs $\mu = \frac{v}{E}$
- Miniaturizzazione dei rivelatori e edll'elettronica → piccole dimensioni → raccolta di carica veloce (<10 ns).
- Ma non c'e' moltiplicazione di carica.

Vertici secondari: necessaria un'alta risoluzione spaziale

Esempio di rivelatore microvertice

L'inizio e' stato:

EASY NEXT STEP :

SUBDIVIDE ONE ELECTRODE INTO THIN STRIPS

FIRST PHOTO OF A MICROSTRIP SILICON DETECTOR

(PISA, 1980)

SIMILAR DEVELOPMENTS

Fig. 2. The MESD after chemical stripping.

Fig. 3. General assembly of the MESD.

THE PACKAGING OF ELECTRONICS

MAIN PROBLEM

BREAKTHROUGH : CHARGE PARTITION BETWEEN ADJACENT STRIPS : 250 Mm SPACING

25 pm RESOLUTION

Capacitative charge division read-out with a silicon strip detector / England, J B A ; Hyams, B D ; Hubbeling, L ; Vermeulen, J C ; Weilhammer, P ; Nucl. Instrum. Methods Phys. Res. : 185 (1981)

.A silicon surface barrier microstrip detector designed for high energy physics / Heijne, E H M ; Hubbeling, L ; Hyams, B D ; Jarron, P ; Lazeyras, P ;Piuz, F ; Vermeulen, J C ; Wylie, A ; Nucl. Instrum. Methods Phys. Res. : 178 (1980)

A multi electrode silicon detector for high energy physics experiments / Amendolia, S R ; Batignani, G ; Bedeschi, F ; Bertolucci, E ; Bosisio, L ; Bradaschia, C ; Budinich, M ; Fidecaro, F ; Foà, L ; Focardi, E ; Giazotto, A ; Giorgi, M A ;Givoletti, M ; Marrocchesi, P S ; Menzione, A ; Passuello, D ; Quaglia, M ; Ristori, L ; Rolandi, L ; Salvadori, P ; Scribano, A ; Stanga, R M ; Stefanini, A ; Vincelli, M L ; IFUP-TH-80-2.

Evoluzione al rivelatore centrale di CMS ${\sim}10^8$ canali

CALORIMETRI

Calorimetro Bunsen a ghiaccio

Principi base

- interazioni di particelle cariche e di fotoni
- cascate elettromagnetiche Outer Hadronic (Coarse)
- interazioni nucleari
- cascate adroniche
- calorimetri omogenei
- calorimetri a sampling

I fotoni sono emessi a $\theta \cong m_e/E'$ (E': energia del fotone dopo l'interazione)

ex.	Xo	cm	
aria	36.2	30050	
Pb	6.37	0.56	
Fe	13.84	1.76	
Scintillatore	43.8	42.4	

$$\frac{dE}{dx}(E_c)\Big|_{Brems} = \frac{dE}{dx}(E_c)\Big|_{ion}$$

Per gli elettroni vale approssivativamente:

 $E_c^{solid+liq} = \frac{610MeV}{Z+1.24} \qquad E_c^{gas} = \frac{710MeV}{Z+1.24} \quad \text{effetti di densita' per}_{dE/dx(ionizzazione) \,!}$

 $E_{c}(e^{-})$ in Fe(Z=26) = 22.4 MeV

Per i muoni $E_c \approx E_c^{elec} \left(\frac{m_{\mu}}{m_e}\right)^2$

 $E_c(\mu)$ in Fe(Z=26) \approx 1 TeV

Interazioni di fotoni

Il fotone e' rivelato se crea particelle cariche e/o se cede energia a particelle cariche

Produce elettroni prevalentemente dal K-shell.

$$\sigma_{photo}^{K} = \left(\frac{32}{\varepsilon^{7}}\right)^{\frac{1}{2}} \alpha^{4} Z^{5} \sigma_{Th}^{e} \qquad \varepsilon = \frac{E_{\gamma}}{m_{e}c^{2}} \quad \sigma_{Th}^{e} = \frac{8}{3}\pi r_{e}^{2} \quad \text{(Thomson)}$$

La sezione d'urto ha una forte modulazione se $E_{\gamma}\approx E_{shell}$

A alte energie ($\epsilon >>1$)

$$\sigma_{photo}^{K} = 4\pi r_{e}^{2} \alpha^{4} Z^{5} \frac{1}{\varepsilon}$$

 $\sigma_{photo} \propto Z^5$

Scattering Compton: $\gamma + e \rightarrow \gamma' + e'$ $E_{\gamma}' = E_{\gamma} \frac{1}{1 + \varepsilon \left(1 - \cos \theta_{\gamma}\right)}$ Assumiamo l'elettrone quasi libero. Sezione d'urto: formula di Klein-Nishina a alte energie l'andamento: $\sigma_c^e \propto \frac{\ln \varepsilon}{\varepsilon}$ Sezione d'urto Compton atomica: $\sigma_c^{atomic} = Z \cdot \sigma_c^e$

Sezione d'urto (approssimazione a alta energia)

$$\sigma_{pair} \approx 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}} \right)$$

Indipendente dall'energia
$$\approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$
$$\approx \frac{A}{N_A} \frac{1}{\lambda_{pair}}$$
$$\frac{1/\lambda'_{pair}}{\lambda_{pair}} = N\sigma_{pp,} N = \rho N_A / A \ e \ \lambda' \ e \ in \ cm$$
$$\lambda_{pair} = \lambda'_{pair} \ \rho \ e \ in \ gr/cm^2$$
$$\lambda_{pair} = \frac{9}{7} X_0$$

Cascata elettromagnetica Produzione in cascata di elettroni e fotoni

Sciame di un elettrone in una camera a nebbia con piombo come assorbitore

Modello semplificato

Consideriamo solo Bremsstrahlung e produzione di coppie. L'energia si γ distribuisce simmetricamente a ciascun passo. $E_{0/2}$ $E_{0/4}$ $E_{0/8}$ $E_{0/16}$ $N(t) = 2^t$ $E(t) / particle = E_0 \cdot 2^{-t}$ Il processo prosegue fino a $E(t) < E^c$ Quindi $E(t_{max}) = E_0/2 \text{ tmax} = E_c$

$$t_{\max} = \frac{\ln E_0 / E_c}{\ln 2} \qquad N^{total} = \sum_{t=0}^{t_{\max}} 2^t = 2^{(t_{\max}+1)} - 1 \approx 2 \cdot 2^{t_{\max}} = 2\frac{E_0}{E_c}$$

Dopo $t = t_{max}$ i processi dominanti sono ionizzazione, Compton e fotoelettrico \rightarrow assorbimento.

Ex. U⁹² E_c=9 MeV se E=1GeV t_{max} =5,N^{total}=200 (con grandi fluttuazioni)

Energia critica: al di sotto si ferma la moltiplicazione

Cascata elettromagnetica

Lo sviluppo longitudinale dello sciame e'quindi esponenziale

 $\frac{dE}{dt} \propto t^{\alpha} e^{-t}$ Il massimo e' a: $t_{\text{max}} = \ln \frac{E_0}{E_c} \frac{1}{\ln 2}$ il contenimento 95% $t_{95\%} \approx t_{\text{max}} + 0.08Z + 9.6$

Esempio: 100 GeV in vetropiombo (E_c=11.8 MeV) \rightarrow t_{max} \approx 13, t_{95%} \approx 23

Le dimensioni di un calorimetro scalano come In(E)

Sviluppo trasverso dello sciame:

95% del cono dello sciame si trova in un cilindro di

raggio 2 R_M
$$R_M = \frac{21 \text{ MeV}}{E_c} X_0 \quad [g/cm^2]$$

Esempio: vetropiomboR_M = 1.8 X₀ ≈ 3.6 cm

• Risoluzione in energia di un calorimetro (limite intrinseco)

$$N^{total} \propto \frac{E_0}{E_c}$$
 numero di segmenti di traccia

$$T \propto \frac{E_0}{E_c} X_0$$
 lunghezza totale della traccia
ma solo una frazione della traccia è misurabile!

$$T_{det} = F(\xi)T \qquad \zeta \propto \frac{E_{cut}}{E_c}$$
 lunghezza della tracia misurabile
(al di sopra di E_{cut})

$$\frac{\sigma(E)}{E} \propto \frac{\sigma(T_{det})}{T_{det}} \propto \frac{1}{\sqrt{T_{det}}} \propto \frac{1}{\sqrt{E_0}}$$
 valida anche per calorimetri adronici
anche la risoluzione spaziale
e angolare va come $1/\sqrt{E}$
Ci sono anche altri contributi:

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

termine
stocastico
inomogeneita'
non contenimento
miscalibrazioni
non linearita'
Fattore di qualita'!

Interazioni Nucleari

Le interazioni di adroni energetici (carichi e neutri) e' determinata da processi nucleari inelastici.

Eccitazione e rottura dei nuclei → frammenti nucleari +produzione di particelle secondarie.

Ad alta energia (>1 GeV) la sezione d'urto dipende poco dall'energia e dal tipo di particella incidente (p, π, K...). $\sigma_{inel} \approx \sigma_0 A^{0.7} \quad \sigma_0 \approx 35 \ mb$

In analogia a X_0 si puo' definire una lunghezza di assorbimento

adronica $\lambda_a = \frac{A}{N_A \sigma_{inel}} \propto A^{\frac{1}{4}} \quad \text{con} \qquad \sigma_{inel} \approx \sigma_0 A^{0.7}$ dx o, analogamente una lunghezza di interazione adronica: $\lambda_I = \frac{A}{N_A \sigma_{total}} \propto A^{\frac{1}{3}} \qquad \lambda_I < \lambda_a$ $dN = -N \cdot N_B \cdot \sigma \cdot dx = -N \cdot \frac{dx}{2}$ $\lambda = \frac{1}{\sigma N}$ = libero cammino medio tra 2 interazioni adroniche, $\lambda \to \rho \lambda$

Materiale	Z	А	ρ [g/cm ³]	$X_0[g/cm^2]$	$\lambda_a [g/cm^2]$
Hydrogen (gas)	1	1.01	0.0899 (g/l)	63	50.8
Helium (gas)	2	4.00	0.1786 (g/l)	94	65.1
Beryllium	4	9.01	1.848	65.19	75.2
Carbon	6	12.01	2.265	43	86.3
Nitrogen (gas)	7	14.01	1.25 (g/l)	38	87.8
Oxygen (gas)	8	16.00	1.428 (g/l)	34	91.0
Aluminium	13	26.98	2.7	24	106.4
Silicon	14	28.09	2.33	22	106.0
Iron	26	55.85	7.87	13.9	131.9
Copper	29	63.55	8.96	12.9	134.9
Tungsten	74	183.85	19.3	6.8	185.0
Lead	82	207.19	11.35	6.4	194.0
Uranium	92	238.03	18.95	6.0	199.0

Per Z > 6: $\lambda_a > X_0$

Cascata adronica

Sono coinvolti molti processi. Piu' complicata che la cascata elettromagnetica.

rottura dei nuclei (energia di legame), neutroni, neutrini, soft γ's muoni.... → energia invisibile pioni neutri $\rightarrow 2\gamma \rightarrow$ cascata elettromagnetica $n(\pi^0) \approx \ln E(GeV) - 4.6$ esempio100 GeV: $n(\pi^0) \approx 18$

Grandi fluttuazioni nell'energia visibile \rightarrow cattiva risoluzione

Tipi di calorimetri

- Calorimetri omogenei :
 - ⇒ Rivelatore=assorbitore
 - ⇒ buona risoluzione in energia
 - risoluzione spaziale limitata (specie nella direzione longitudinale)
 - ⇒ usati solo per i calorimetri elettromagnetici

- Calorimetri sampling :
 - Il rivelatore e l'assorbitore sono separato → solo parte dell'energia e' misurata.
 - ⇒ Risoluzione in energia peggiore
 - ⇒ buona risoluzione spaziale
 - ⇒ usati sia per gli elettromagnetici che per gli adronici

Calorimetri sampling

L'assorbitore e il rivelatore sono separati →alla fluttuazione di lunghezza della traccia si aggiunge quella di samplig

ATLAS: Calorimetro elettromagnetico (accordion)
 Assorbitori a geometria a fisarmonica (accordion) immersi in LAr

LAr (90K)

(RD3 / ATLAS)

- + Assorbitori di acciaio-piombo (1-2 mm)
- + strati di rame-polyimide

come carte di lettura

- \rightarrow E' una camera a ionizzazione.
- 1 GeV E-deposito \rightarrow 5 x10⁶ e⁻

- La geometria a fisarmonica minimizza le zone morte.
- L'argon liquido e' intrinsicamente resistente a rad..
- Le carte di lettura permettono una segmentazione fine in azimuth, pseudo-rapidita' e longitudinale come richiesto dalla fisica

Ex: $\mathbf{H} \longrightarrow \gamma \gamma$

Calibrazione al test beam: e⁻ 300 GeV (ATLAS TDR)

Risoluzione spaziale e misurabilita' di $H \rightarrow \gamma \gamma$

 $E(H)_{\text{max}} =$

Consideriamo separati i due sciami se, a distanza R:

$$\alpha_{\min} = 2 \frac{R_M}{R}$$
$$\Rightarrow E(H)_{\max} = \frac{R \cdot m(H)}{R_M}$$

Se R=1 m

$$R_M = 5 \text{ cm} \implies E(H)_{max} = 2TeV$$

 $m(H)=100 \text{ GeV}$

Risoluzione in massa invariante $m(\gamma\gamma)=m(H)$

Supponiamo di avere un Higgs di m=100 GeV e di un energia di 400 GeV che decade simmetricamente in due fotoni con angolo α tra I due:

$$\alpha = 2\frac{m(H)}{E(H)} = 0.5rad$$

$$m^{2}(\gamma\gamma) = (p_{1\gamma} + p_{2\gamma})^{2} = (E_{1\gamma} + E_{2\gamma})^{2} - (\vec{p}_{1\gamma} + \vec{p}_{2\gamma})^{2} = 2E_{1\gamma}E_{2\gamma}(1 - \cos\alpha) = 4E_{1\gamma}E_{2\gamma}\sin^{2}\frac{\alpha}{2}$$

$$\frac{\Delta m}{m} = \frac{1}{2} \left[\left(\frac{1}{2} \cot g \frac{\alpha}{2} \Delta \alpha \right)^2 + \left(\frac{\Delta E_{1\gamma}}{E_{1\gamma}} \right)^2 + \left(\frac{\Delta E_{2\gamma}}{E_{2\gamma}} \right)^2 \right]^{1/2}$$

$$se\frac{\Delta E}{E} = \frac{10\%}{\sqrt{E}}, \frac{\Delta E_{1\gamma}}{E_{1\gamma}} = \frac{\Delta E_{2\gamma}}{E_{2\gamma}} = 0.007, \Delta \alpha = 0.01$$
$$\frac{\Delta m}{m} \approx 1\% \Longrightarrow \Delta m \approx 1 \,\text{GeV}$$

La larghezza naturale di un Higgs di 100 GeV: Γ(H)≈10 MeV