Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part I)

Carlo Piermarocchi Condensed Matter Theory Group Department of Physics and Astronomy Michigan State University, East Lansing, Michigan

Dipartimento di Fisica, Pisa, Italy July 11th,14th, 15th 2008

Quantum Computing and Quantum Control Theory

Qubits and quantum gates

Control of a quantum system

$$H = H_0 + H_{control}(t, \sigma_1, \sigma_2, \dots)$$

$$|\Psi\rangle = \alpha |\psi_0\rangle + \beta |\psi_1\rangle + \gamma |\psi_2\rangle + \delta |\psi_3\rangle + \dots$$

Control Design and Optimization Quantum Dots Optics

Today (Friday)

Quantum Dots

Optical Quantum Control of Excitons and Biexcitons in Quantum Dots

Two-Qubit problem in a QD

Pulse Shaping

Tuesday

Bragg Polaritons Cavity QED and Spin

Multi-spin Interaction

$$\hat{H}_T = \sum_{i>j} \tilde{J}_{ij}^{(2)} S_{iz} S_{jz} + \sum_{i>j>k>l} \tilde{J}_{ijkl}^{(4)} S_{iz} S_{jz} S_{kz} S_{lz} + \dots$$

Ground State Multi-Spin-Entanglement

$$|GHZ\rangle = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\uparrow\rangle+|\downarrow\downarrow\downarrow\rangle)$$

GaAs

Excitons are elementary optical excitations in semiconductors

The photo-excited electron and hole bind and propagate through the crystal (G. H. Wannier PR 37)

Hydrogen-like spectrum

$$a_{B} = \frac{\hbar^{2} \varepsilon}{\mu^{*} e^{2}} \approx 80 \text{ Å}$$

$$\mu^{*} \approx 0.05 m_{0}$$

$$E_{b} = \frac{\mu^{*} e^{4}}{2\varepsilon^{2} \hbar^{2}} \approx 5 \text{ meV}$$

$$\varepsilon \approx 13$$

Propagation allowed only in the in-plane direction

Semiconductor Quantum Dots

D.Gammon et al, Phys. Rev. Lett. 76,3005 (1996)

Interface fluctuation quantum dots (30 nm)

Quantum Dots

Strain-induced quantum dots (3 nm)

A. Zrenner *et al.* J. Chem. Phys. 112, 7790 (2000)

Self assembled

Pyramidal dots

Self-limited growth (6 nm)

A. Hartmann *et al.*J. Phys. Cond. Matt.
11, 5901 (1999)

Excitons in a single QD

D. Gammon at al , Phys. Rev. Lett. 76,3005 (1996)

Multiexciton States

A Excitons A Excitons C One Biexciton and Excitons Pre-Pulse BX 1.617 1.619 1.62 1.622 Energy (eV)

A QD is an "atom" where the number of protons and electrons can be controlled

X. Li et al Science 2003

Excitons in Charged Dots

Warburton *et al* , Nature 405, 926 (2000)

Optical Control

Direct Control of the Exciton and Biexciton state

$$|\Psi\rangle = \alpha |0\rangle + \beta |+\rangle + \gamma |-\rangle + \delta |-+\rangle$$

Rabi Rotations

Light used for an indirect control of two spins $|\Psi\rangle = \alpha |\downarrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle + \gamma |\uparrow\downarrow\rangle + \delta |\uparrow\uparrow\rangle$

Adiabatic Raman Control, ORKKY

Rabi Oscillations

Optical Pulses give a full quantum control of the two level system

 $a|0\rangle + b|1\rangle$

Rabi Oscillations of Excitons

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87,133603 (2001).

Excitons vs Atoms

Control of Biexcitons

Ready to be used as a two-qubit quantum computer

X. Li, Y. Wu, D. Steel D. Gammon, T.H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Science 301, 811 (2003)

Excitons are qubits

The Deutsch-Jozsa Parlor Game

4 different coins: two fair and two fake

An Oracle looks at one side of a coin and tells you if it is head or tail

How many consultation of the Oracle do you need to find out if a coin is fair or fake?

Using quantum superposition and quantum interference only one consultation is needed

Deutsch problem

f_?(x) constant or balanced?

Classical computing: I have to evaluate both

 $f_2(0)$ $f_2(1)$ and compare the results.

Optimization of the design: Pulse Shaping

$$\Omega_{R}(t) = \Omega_{R}^{0}(e^{-(t/s)^{2}}e^{-i\omega_{X}t} + e^{-(t/s^{2})^{2}}e^{-i\omega_{XX}t - i\pi})$$

Analytical Methods

$$H_{control}(t, s, s_1, \Omega_0)$$

Numerical maximization of the Fidelity

Magnus expansion

$$U = Te^{-\frac{i}{\hbar}\int_{0}^{\infty}H_{C}(t)dt} = e^{-\frac{i}{\hbar}(S^{1}_{C}+S^{2}_{C}+S^{3}_{C}+...)}$$
$$S_{C}^{1} = \frac{1}{2}\int_{0}^{\infty}H_{C}(t)dt \qquad S_{C}^{2} = \frac{-i}{8}\int_{0}^{\infty}dt\int_{0}^{t}dt' [H_{C}(t), H_{C}(t')]$$

For a given U is possible to find an analytical expressions for the control parameters

C. Piermarocchi, P. Chen, and L. J. Sham, PRB (2002)

C-ROT

Simulation of Deutsch in a QD

Six multi-exciton states with 4 level for 2 qubits. (Other states are sufficiently far away.)

Decoherence included

Pulse shaping

Pochung Chen, C. Piermarocchi, L. J. Sham, *Control of Spin Dynamics of Excitons in Nanodots for Quantum Operations*, Phys. Rev. Lett. 87, 067401 (2001).

Time Evolution

ps

Conclusions

Control of exciton and biexciton in a QD

Experimentally realized

Readily applicable to two-qubit quantum algorithms

Benchmark for issues in the optical control design

Time Evolution of Two Qubits