Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III)

Carlo Piermarocchi Condensed Matter Theory Group Department of Physics and Astronomy Michigan State University, East Lansing, Michigan

Dipartimento di Fisica, Pisa, Italy July 11th,14th, 15th 2008

Where is Michigan State University ?

www.msu.edu

East Lansing

46K Students 10K Graduates 36K Undergraduates

Research Groups

Astronomy / Astrophysics (10 faculty) Condensed Matter Physics (17) Nuclear Physics (16) Particle Physics (18)

Department of Department of Physics and Astronomy

www.pa.msu.edu

Physical Sciences Building

Astronomy / Astrophysics

Condensed Matter Physics

Nano-Science Spintronics Biophysics Institute for Quantum Science W.M.Keck Microfabrication Facility

carlo@pa.msu.edu

Nuclear Physics

National Superconducting Cyclotron Laboratory Research: basic nuclear physics Supported by NSF (~M\$15/year) Faculty: Physics (16), Chemistry (2) Ph.D. program ranked #2 in USA

Particle Physics

Experimental group working on detectors (D0 and CDF) at Fermilab and ATLAS (CERN);D0 collaboration spokesperson

Theory Group

Polaritons and spin coupling in quantum computing architectures

Bragg polaritons in quantum dot lattices

Spacer Mirrors

Planar Microcavities

Fabry-Pérot resonator

Quantization of the em field in the z direction

$$K_z = \sqrt{\frac{\omega^2}{c^2} n_{cav}^2 - K^2_{\parallel}} = \frac{N\pi}{L_c}$$

Lc

SEMICONDUCTOR MICROCAVITIES

Polaritons: Half-light half-matter particles

Photons in a cavity have a mass

Polaritons have a photon-like mass

Sept 28 2006

Bose Einstein Condensation of Polaritons

J. Kasprzak et al. (2006)

Bottleneck-effect

	POLARITONS	BEC ATOMS
Mass	0.00001 x m ₀	100,000 x m _o
т	T ~ 100 K	T ~ 10 nK
Lifetime	t ~ 1-10 ps	t~1s

F. Tassone, C. Piermarocchi at al. (1997)

Can polaritons in planar microcavities be useful for Quantum Computing ?

The Range Problem in Quantum Computing Architectures

Polaritons can induce a very Long Range Spin-Qubit Coupling

Optical RKKY: Itinerant excitons mediate a spin interaction

Optical spin coupling with polaritons

Polariton-mediated Ising component has a very long range

G. Quinteiro Rosen, J Fernández-Rossier, and C Piermarocchi, PRL 97 097401 (2006)

Polariton splitting causes spin anisotropy

e: $J_{z}=\pm 1/2$ h: $J_{z}=\pm 3/2$

Dimensionality mismatch in light-matter coupling

Exciton couples to single Photon

Exciton couples to a Photon Continuum

Photon

Quantum Dot Rabi Splitting

0D cavity Photon+0D quantum dot exciton

Strong coupling in a single quantum dot–semiconductor microcavity system

J. P. Reithmaier¹, G. Sęk¹*, A. Löffler¹, C. Hofmann¹, S. Kuhn¹, S. Reitzenstein¹, L. V. Keldysh², V. D. Kulakovskii³, T. L. Reinecke⁴ & A. Forchel¹

¹Technische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

²Lebedev Physical Institute, Russian Academy of Science, 119991 Moscow, Russia ³Institute for Solid State Physics, Russian Academy of Science, 142432 Chernogolovka, Russia

⁴Naval Research Laboratory, Washington, DC 20375, USA

Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity

T. Yoshie¹, A. Scherer¹, J. Hendrickson², G. Khitrova², H. M. Gibbs², G. Rupper², C. Ell², O. B. Shchekin³ & D. G. Deppe³

¹Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA

²Optical Sciences Center, The University of Arizona, Tucson, Arizona 85721, USA ³Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA

(2004)

2D photons coupled to 2D array of Quantum Dots

q+G

Exciton couples to discrete photon modes differing by reciprocal lattice vectors G

Hamiltonian: exciton in QD lattice and 2D photons

Fourier transform of the localized states

$$\begin{aligned} \left|\vec{i}\right\rangle \rightarrow \left|\vec{q}\right\rangle &= \frac{1}{\sqrt{N}} \sum_{i} e^{i\vec{q}\cdot\vec{R}_{i}} \left|\vec{i}\right\rangle \\ H &= \sum_{\vec{q}\in BZ} h(\vec{q}) \end{aligned}$$
Lattice momentum q is in the first Brillouin Zone (BZ) of the dot lattice
$$h(q) &= \hbar \omega_{x} \sigma_{\vec{q}}^{+} \sigma_{\vec{q}}^{-} + \sum_{\vec{G}\in RL} \hbar \omega(\vec{q} + \vec{G}) A_{\vec{q}+\vec{G}}^{+} A_{\vec{q}+\vec{G}} + \left(\hbar g_{\vec{q}+\vec{G}} A_{\vec{q}+\vec{G}}^{-} + h.c.\right)$$
Normal coupling
$$W$$

$$F$$

$$BZ$$

The reduced Zone Scheme

Consider the Photon q+G as quasiparticle labelled by a quantum number G and with momentum q (restricted to 1st BZ)

Bragg Polaritons

Idea: Create polaritons in the neighborhood of a Bragg plane!

E. M. Kessler, M. Grochol, C. Piermarocchi, Phys. Rev. B 77 072804 2008

X-Bragg polaritons have strong in-plane asymmetry

The upper polariton (UP) mode

	UP (1)
m_{xx}/m_{ph}	$1.7 \cdot 10^{-3}$
m_{yy}/m_{ph}	3.32

Photon-like mass in y-direction ($\sim 10^{-5} m_0$) Even smaller in x-direction ($\sim 10^{-8} m_0$)

π -polaritons in micro-cavities

C. W. Lai et al. Nature 450 529 (2007)

Dirac Polaritons on Square Lattices

The dot size and lattice spacing can be optimized to maximize the Rabi splitting as at zone boundary

The Upper Polariton and Lower Polariton at M

UP 0.504 0.506 0.496 0.496 0.496 0.5 0.5 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.5040.504

UP(1)

 $3.43\cdot 10^{-3}$

 $3.43 \cdot 10^{-3}$

 m_{xx}/m_{ph}

 m_{yy}/m_{ph}

LP(5)

 $-3.4 \cdot 10^{-3}$

 $-3.4 \cdot 10^{-3}$

LP

Isotropic extremely small mass for UP and LP

One central polariton mode is slow photon mode, photon mass increase ~L/a

Can polariton effects be useful for Quantum Computing ? **Charged QD Mirrors** (donors) QW F-AL

Quantum Well Polaritons

Long range spin coupling

Continuous-discrete mismatch

Dirac polaritons

Quantum Dot Lattice

Quantum memory

Lu Sham UC San Diego

Guillermo Quinteiro Rosen, Univ. Buenos Aires, Argentina

Joaquin Fernandez Rossier Alicante, Spain

Po Chung Chen Tsing-Hua Taipei

Eric Kessler, MPI Garching, Germany

Allan MacDonald U Texas Austin

Disorder

Polaritonic effects the most sensitive to energy disorder.

M. Grochol and C. Piermarocchi, arXiv:0802.3184 (Accepted in Phys Rev B)

Multi-spin coupling

Dot energy levels

$$\hat{H}_{I} = J_{S} \sum_{j} S_{jz} P_{jz}$$
$$P_{jz} = C_{j\uparrow\uparrow}^{\dagger} C_{j\uparrow} - C_{j\downarrow}^{\dagger} C_{j\downarrow}$$

Coupling

 $J_{8,15,13,10}^{(4)}$

exciton

Effective Hamiltonian

$$\hat{H}_T = \sum_{i>j} \tilde{J}_{ij}^{(2)} S_{iz} S_{jz} + \sum_{i>j>k>l} \tilde{J}_{ijkl}^{(4)} S_{iz} S_{jz} S_{kz} S_{lz} + \dots$$

CNOT-gate error

High fidelity gate operation in short time ($t_G << T_2$) possible.

M. Grochol and C. Piermarocchi, arXiv:0805.2427