The top search

1970s B-quark discovery

e+ e-	PETRA	12-4	7 GeV
	TRISTAN	61.4	GeV
	LEP	≈M	Ζ
Mt > 4	45.8 GeV		

p+p-	ISR	60 GeV
	SppS	630 GeV
	Tevatron	1800 GeV

170 ± 0111 IVIt $\pm 0\pm 10$	1984	UA1	$Mt = 40 \pm 10$
----------------------------------	------	-----	------------------

- 1989 UA1 Mt > 60 GeV UA2 Mt > 69 GeV
- 1989 CDF Mt > 91 GeV
- 1993 D0 Mt > 131 GeV
- 1994 CDF Mt = $174 \pm 10 \pm 12$ first evidence

Top Production and Decay

• Production:

• Theory production cross section versus mass:

• In the Standard Model, top decays via

$$t \to W + b$$

Top Decay Signature

• Both W's Decay $W \to \ell \nu$

- Final State: $\ell^+ \nu \ell^- \nu b \overline{b}$ (ℓ : $e \text{ or } \mu$)
- Dilepton Channel, Branching Ratio $\sim 5\%$
- Require jet activity to reduce the background.
- One W Decays $W \to \ell \nu$
 - Final State: $\ell^+ \nu \ q \bar{q}' \ b \bar{b} \qquad (\ell: \ e \ \text{or} \ \mu)$
 - Lepton+Jets Channel, Branching Ratio $\sim 30\%$
 - Identify *b*-quarks to reduce the background.
- Both W's decay $W \to q\bar{q}'$
 - Final State: $q\bar{q}' q\bar{q}' b\bar{b}$
 - All Hadronic Channel, Branching Ratio $\sim 44\%$
 - Identify *b*-quarks, use mass information, to reduce the background.

Top and CDF

Lepton Plus Jets Channel

 $\begin{array}{c} t \to W^+ b \to \ell^+ \nu b \\ \bar{t} \to W^- \bar{b} \to q \bar{q}' \bar{b} \end{array}$

Event Selection

- A primary lepton with $E_T > 20$ GeV.
- $\not\!\!\!E_{\rm T} > 20 \,\, {\rm GeV}$
- Require N_{jet} ≥ 3 , $E_T > 15$ GeV, $|\eta| < 2.0$
- Remove Z's: $75 < M_{\ell\ell} < 105 \text{ GeV/c}^2$
- Dilepton Events Removed

After Selection:

- Total Number of $W + \ge 3$ jets: 324 Events
- For $\sigma_{t\bar{t}} = 4.8 \text{ pb} \longrightarrow \text{expect} \approx 44 \ t\bar{t}$ Events satisfying selection criteria.

Need Background Rejection!

Backgrounds:

• Dominant Background in lepton+jets search is non-top QCD W+multijet production.

- Background rejected using **b** tagging:
 - Every $t\bar{t}$ event contains 2 **b** quarks
 - Only ~ 2% of QCD W+jets events are expected to contain b quarks.

Two b tagging Algorithms:

- Location of displaced vertex using SVX.
- Soft Lepton (e or μ) from b-quark decay.

b tagging

- b-quarks have a long lifetime : $\tau(b) \sim 1.5 \text{ ps} (c\tau \sim 450 \,\mu\text{m})$ \implies B hadrons travel L_{xy} $\sim 3 \,\text{mm}$ before decay.
- b-tagging using displaced vertices (SVX) (CDF)

The first "Evidence"

Top and CDF

Background Determination:

- The fake background is parametrized from "generic" jet data.
- $Wb\bar{b}, Wc\bar{c}, Wc$ rates determined from Monte Carlo and scaled to the observed number of W events in a given jet multiplicity bin.
- The additional backgrounds are derived from a combination of data and monte carlo.

	Before Tag	Exp Tags	Obs Tags (Evts)
W+1 Jet	10716	69 ± 10.9	70(70)
W+2 Jet	1663	29 ± 3.9	51 (45)
W+3 Jet	254	6.8 ± 0.9	24 (18)
$W+\geq 4$ Jet	69	2.6 ± 0.5	18 (16)

SVX b-tagging Results

N_{jet} Plot for SVX

Signal Region (3 or More Jets):

Background: 9.47 ± 1.4 Tags Observed Tags: 42 Tagged Events: 34

Soft Lepton b-tagging Results

	Before Tag	Exp Tags	Obs Tags (Evts)
W+1 Jet	10716	273 ± 35	245 (245)
W+2 Jet	1663	79 ± 10	82 (80)
W+3 Jet	254	17.4 ± 2.8	27 (25)
$W+\geq 4$ Jet	69	7.8 ± 1.0	17(15)

Signal Region:

Background: 25.2 ± 3.8 Tags

Observed Tags:44Tagged Events:40

Dilepton Channel

 $t \to W^+ b \to \ell^+ \nu b$ $\bar{t} \to W^- \bar{b} \to \ell^- \bar{\nu} \bar{b}$

Primary Lepton Selection:

- $E_T (P_T) \ge 20 \text{ GeV} (\text{GeV/c})$
- Tight set of identification cuts

Second Lepton Selection:

- $E_T (P_T) \ge 20 \text{ GeV} (\text{GeV/c})$
- Loose set of identification cuts
- opposite charge

Kinematic Selection:

- $\mathbb{E}_{\mathrm{T}} \geq 25 \, \mathrm{GeV} \, (\mathrm{From \, two} \, \nu' \mathrm{s})$
- Two Jets with $E_T \ge 10$ GeV and $|\eta| < 2.0$
- Remove $Z \rightarrow ee~(\mu\mu)$, $75 < M_{\ell\ell} < 105 \text{ GeV/c}^2$.
- $\Delta \phi(l, \mathbf{E}_{\mathrm{T}}) > 20^{\circ}$ and $\Delta \phi(jet, \mathbf{E}_{\mathrm{T}}) > 20^{\circ}$ when $\mathbf{E}_{\mathrm{T}} < 50 \text{ GeV}$ (Removes $Z \to \tau \tau$)

Summary of Dilepton Data

Run 1 dilepton data (109 pb⁻¹), CDF preliminary

All Hadronic Channel

$$\begin{array}{c} t \to W^+ b \to q \bar{q}' b \\ \bar{t} \to W^- \bar{b} \to q \bar{q}' \bar{b} \end{array}$$

Kinematical Selection:

- $5 \ge N_{jet} \ge 8 \ (E_T > 15 \ GeV, |\eta| < 2.0, \Delta R_{min} \ge 0.5)$
- $\Sigma E_T \geq 300 \ GeV$, $\Sigma E_T/\sqrt{s} \geq 0.75$, Aplanarity
- Require ≥ 1 SVX *b*-tag.

$t\bar{t}$ Production Cross Section

Method:

- We calculate the cross section implied by the excess of events observed in the 3 counting experiments: W+jets with an SVX B-tag, W+jets with an SLT B-tag, and Dileptons.
- The cross section is calculated using the relation:

$$\sigma = rac{n-b}{\epsilon^{tot}\cdot \int \mathcal{L} dt}$$

Item	SVX	SLT	Dilepton
N_{events}^{tagged}	34	40	10
ϵ_{total} (in %)	3.5 ± 0.6	1.7 ± 0.3	0.78 ± 0.08
Background	8.0 ± 1.4	24.3 ± 3.5	2.1 ± 0.4
Luminosity	$109.4 \pm 7 \ pb^{-1}$	$109.4 \pm 7 \ pb^{-1}$	$109.4 \pm 7 \ pb^{-1}$
X-Section	$6.8 \pm 2.1 \ pb$	$8.0 \pm 4.0 \ pb$	$9.3 \pm 3.9 \ pb^{-1}$

Combined

 $\sigma(t\bar{t}) = 7.5 \stackrel{+1.9}{_{-1.6}} pb$

Uncertainty from systematics: $\sim 16\%$ Uncertainty from statistics: $\sim 24\%$

Comparison with Theory Cross Section

Mass Analysis

We fit the tagged lepton+jets events to the $t\bar{t}$ hypothesis using constrained fitting techniques.

Sample: Lepton + Jet events with a 4th jet with $E_T > 8 \text{ GeV}, |\eta| < 2.4$ 162 events remain, 34 events with a b-tag

$$p\bar{p} \rightarrow t_1 + t_2 + X$$

$$t_1 \rightarrow W_1 + b_1$$

$$t_2 \rightarrow W_2 + b_2$$

$$W_1 \rightarrow l + \nu$$

$$W_2 \rightarrow j_1 + j_2$$

- All jet assignments are attempted.
- Both solutions for $P_z(\nu)$ are tried.
- b-tag required to be one of the b jets.
- The solution with the lowest χ^2 is kept.

Constraints:

$$egin{aligned} M_{l
u} &= M_W \ M_{j_1 j_2} &= M_W \ M_{t_1} &= M_{t_2} \end{aligned}$$

 $M_{top} = 176.1 \pm 5.1(stat.) \pm 5.3(syst.) \text{ GeV}/c^2)$

Systematic	$\Delta m (GeV/c^2)$
Jet energy scale	4.4
Initial and Final state radiation	2.6
Shape of background spectrum	1.3
b-tagging bias	0.4
Parton distribution functions	0.3
Monte Carlo generators	0.1
TOTAL	5.3

Summary of Run 1 top mass measurements

Tevatron Top Quark Mass Measurements

Top, W and the Higgs sector

• Measurements of M_W and M_{top} constrain M_H .

- In Run II (2 fb^{-1}) should be able to infer $\delta M_H/M_H \approx 40\%$ at the Tevatron.
- These indirect probes into the Higgs sector, together with the limits from direct searches (currently $M_H < \sim 108$ GeV from LEP), are narrowing the window available to the SM Higgs. (See also CDF combined Higgs limits in session V14)

CDF Measurement of Vtb

- Unitarity (within a 3-generation SM) $V_{tb} \sim 1$.
- CDF has analyzed the *I* + jets and dilepton samples to:
 - measure the ratios of the event numbers with 0,1, and 2 b-tags
 - use them to extract the ratio:

$$R_{b} = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq)}$$

- The result is independent of top cross section and W branching ratio.
- Maximum likelihood fit to the data yields: $R_b = 0.99 \pm 0.29$ or $R_b > 0.64$ at 95% C.L.
- Assuming three-generations unitarity:

$$|\mathbf{V}_{tb}| = 0.99 \pm 0.15 \text{ and } |V_{tb}|^2 > 0.76 \text{ at } 95\% \text{ C.L.}$$

Run 2 Data Sample Sizes

- Tevatron Upgrade, 1.8 -> 2.0 TeV, 20X more lum.
- At 2 TeV, the top cross section is ~40% higher than Run 1
- Primary lepton (W->lnu) acceptance increases

- ~33% for electrons , ~15% for muons

- We expect: ~60% more sgl tags, ~200% more dbl tags
- Impact on Physics Data Samples (2fb⁻¹, 6.8pb ttbar XS)
 - ~1000 SVX tagged W+>3 Jet Events (34 in Run 1)
 - ~300 SVX double tagged events (8 in Run 1)
 - ~150 Dilepton Events (9 in Run 1)
 - Lepton+jets Mass Sample
 - ~750 events with at least 1 SVX b-tag (15 in Run 1)
 - ~250 events with 2 SVX b-tags (5 in Run 1)
- For lepton+jet events in the SVX channel our total accentance will do ble

Top Physics @ LHC

LHC \sqrt{s} = 14 TeV L = 10^34 cm^-2

σ(tī) ≈ 800pb ≈ 10^8 tī pairs/year _____7pb @ √5 = 1.8 TeV

• Single top: $\sigma \approx 300 \text{ pb} (40\% \text{ of } t\bar{t})$ Never observed so far!!

1/3 of tt

 tī production is main background to New Physics (Higgs, SUSY, ...)

Measurement of m_{top}

- Year 2005 : $\Delta m_{top} \approx 3 \text{ GeV}$ (Tevatron)
- Best channel: $tt \rightarrow Wb \rightarrow lvb$ $\downarrow \rightarrow Wb \rightarrow jjb$

≈29.6% of all tt evts

top mass determined from hadronic part of decay $m_t = m_{jjb}$ leptonic top used to tag event: hight p_T lepton large E_T^{miss}

