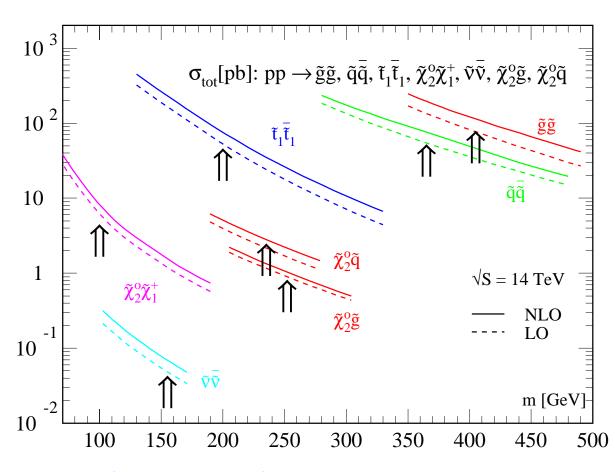
Part 4: Strategy for SUSY discovery


Giacomo Polesello

INFN, Sezione di Pavia

SUSY at the LHC: general features

Sparticles have same couplings of SM partners \Rightarrow production dominated by colored sparticles: squarks and gluinos if light enough

Squark and gluino production cross-section \sim only function of squark and gluino mass

Production cross-section \sim independent from details of model:

- $\sigma_{SUSY} \sim 50$ pb for $m_{\tilde{q},\tilde{g}} \sim 500$ GeV
- \bullet $\sigma_{SUSY} \sim 1$ pb for $m_{\tilde{q},\tilde{g}} \sim 1000$ GeV

Features of SUSY events at the LHC

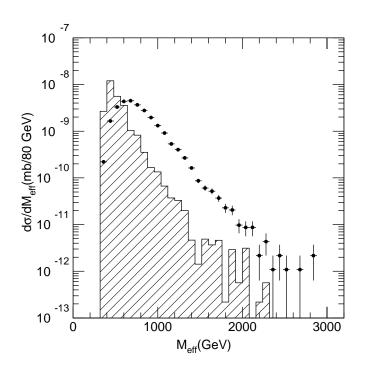
Broad band parton beam: all processes on at the same time: different from e^+e^- colliders where one can scan in energy progressively producing heavier particles Bulk of SUSY production is given by squarks and gluinos, which are typically the heaviest sparticles

 \Rightarrow If R_p conserved, complex cascades to undetected LSP, with large multiplicities of jets and lepton produced in the decay.

Both negative and positive consequences:

- Many handles for the discovery of deviations from SM, and rich and diverse phenomenology to study
- Unravelling of model characteristics will mostly rely on identification of specific decay chains: difficult to isolate from the rest of SUSY events

SUSY is background to SUSY!


Triggering on SUSY: ATLAS strategy

Inclusive approach: $E_T + 1$ jet and multi-jet triggers

Keep lowest threshold compatible with affordable rate.

- high signal efficiency
- possibility of more detailed background studies

Ex. $E_T > 70$ GeV, 1 Jet with $E_T > 70$ GeV. Rate \sim 20 Hz at 2×10^{33} cm⁻²s⁻¹.

Example: Point with m(\tilde{q} , \tilde{g})=400 GeV

Require $E_T > 80$ GeV, 1 Jet $E_T > 80$ GeV

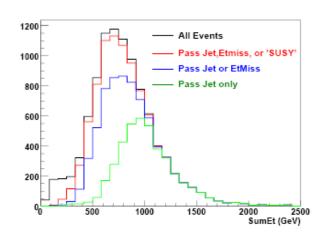
Plot:

$$M_{\text{eff}} \equiv \sum_{i} |p_{T(i)}| + E_T^{\text{miss}}$$

With higher cuts the signal turn on would not be observable

Trigger menu table

Object	Physics coverage	Object name
electrons	Higgs, new gauge bosons, extra dim., SUSY, W/Z, top	e25i, 2e15i, e60
Photons	Higgs, SUSY, extra dim.	γ60, 2γ20i
Muons	Higgs, new gauge bosons, extra dim., SUSY, W/Z, top	μ20i, 2μ10
Jets	SUSY,compositness,resonances	j400, 3j165, 4j110
Jets+missEt	SUSY, leptoquarks	j70+xE70
Tau+missEt	Extended Higgs models (e.g. MSSM), SUSY	τ35i+xE45


SUSY events are complex with many physics objects. triggered by many items

Example: efficiency for specific SUSY model

Focus on mSUGRA point with $m(\tilde{g}) \sim m(\tilde{q}) \sim 600 \text{ GeV}$

Evaluate efficiency for different components of jet trigger menu

trigger	Efficiency (%)	
J400	34	
2J350	12	
3J165	13	
4J110	7	
xE200	63	
SUSY xE70+J70	90	
Only jets	43	
Jet or xE	73	
Anything	92	

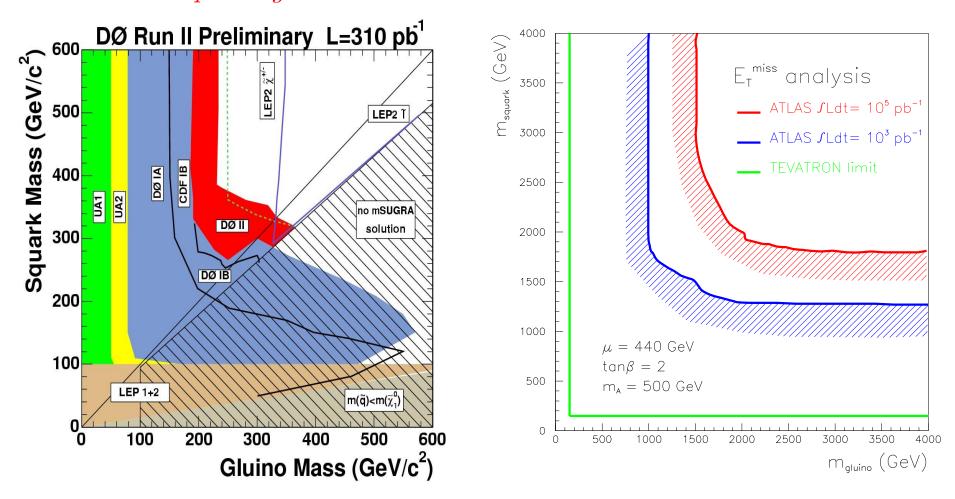
Using only jet triggers gives low efficiency

missEt and 'SUSY' trigger do most of the job!

No lepton/tau trigger included in this study.

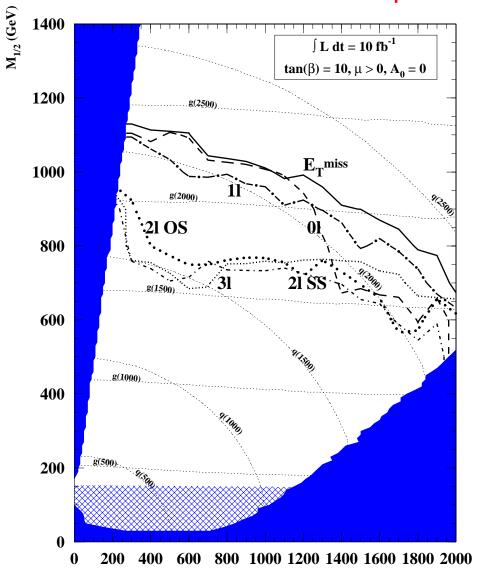
SUSY discovery

Most important features of SUSY events used for discovery:


- E_T : from LSP escaping detection
- High E_T jets: variables: N_{jets} , $P_T(jet_1)$, $P_T(jet_2)$ $\Sigma_i |p_{T(i)}| \Delta \phi(jet E_T)$ guaranteed if unification of gaugino masses assumed, otherwise can devise degenerate models where jets are very soft. Variables:
- ullet Spherical events: variable S_T From Tevatron limits squarks/gluinos must be heavy (\gtrsim 400 GeV).
- Multiple leptons: from decays of Charginos/neutralinos typically present in cascade

Analysis method: study a grid of points in SUSY parameter space, for each point optimize cut on variables for different basic signatures:

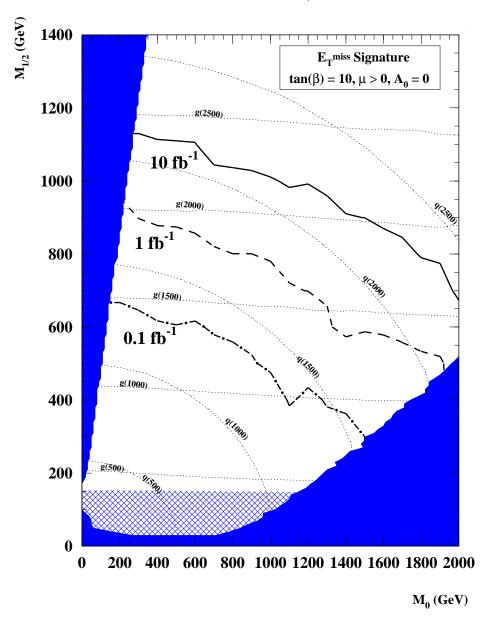
 $(E_T+jets, 1 lepton, 2 leptons OS, 2 leptons SS)$


Call within reach points for which $S/\sqrt{B}>5$ and S>10 Events after cuts

Study in $m_{\widetilde{q}}-m_{\widetilde{q}}$ parameter space: Tevatron and LHC

Very old ATLAS study, generic analysis cuts not optimised for different phase-space regions

Inclusive reach in mSUGRA parameter space



Multiple signatures on most of parameter space

- $E_T \leftarrow Dominant signature$
- ullet E_T with lepton veto
- One lepton
- Two leptons Same Sign (SS)
- Two leptons Opposite Sign (OS)

M₀ (GeV)

Significant reach from E_T signature from earliest phases of the experiment

Assume $10^{33} \text{ cm}^{-2} \text{s}^{-1}$:

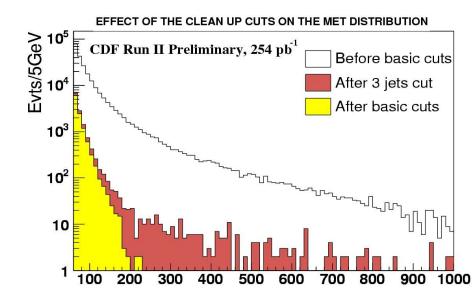
- $\bullet \sim 1300 \text{ GeV}$ in "one week"
- $\bullet \sim 1800 \text{ GeV}$ in "one month"
- $\bullet \sim$ 2200 GeV in one year

Main time limitation not from signal statistics, but from understanding the detector performance.

Need large amounts of $W,Z,\bar{t}t$ data for firm background evaluation

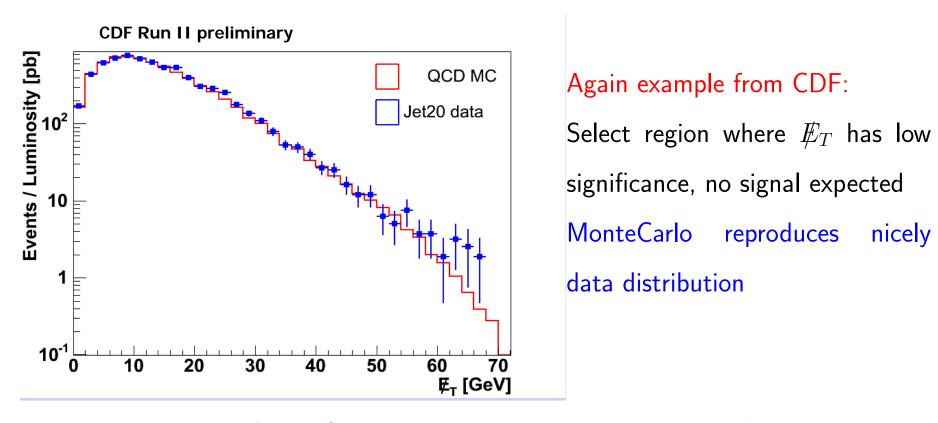
Backgrounds to E_T + jets analysis

Instrumental E_T from mismeasured multi-jet events:


Many sources: gaps in acceptance, dead/hot cells, non-gaussian tails, etc.

Require detailed understanding of tails of detector performance.

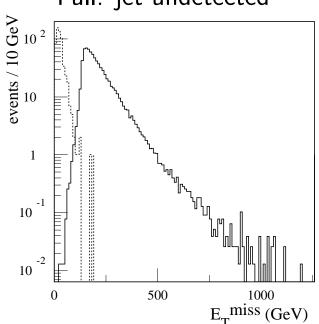
Reject events where fake E_T likely.

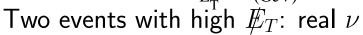

- beam-gas and machine backgrounds
- displaced vertexes
- hot cells
- E_T pointing along jets
- jets in regions of poor response

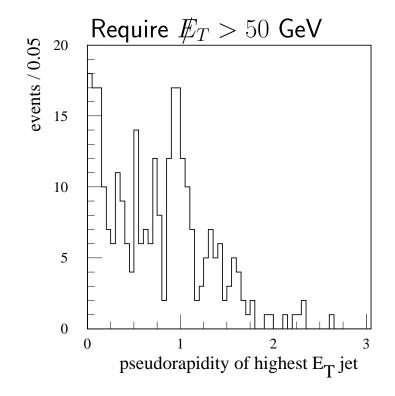
See effect of E_T cleaning in CDF

All detector and machine garbage will end up in E_T trigger

Need fast Monte Carlo with good reproduction of detector response: normalise MC to data at low E_T and use it to predict high E_T background in "signal" region

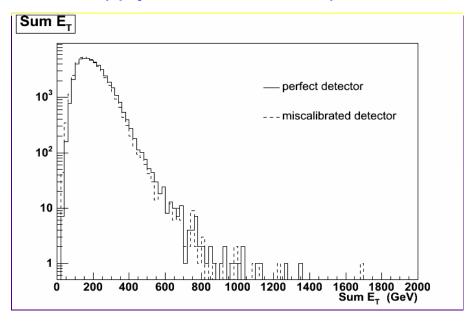

Very high priority for LHC collaborations is reaching this level of detector understanding

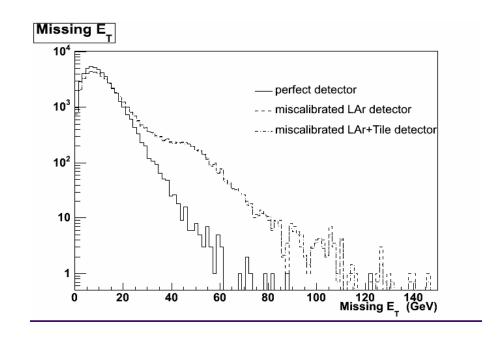

Example: control of instrumental E_T (ATLAS TDR)


ATLAS study: event balance in fully simulated $Z \to \mu\mu$ with $p_T(Z) > 200$ GeV

Dotted: measured E_T

Full: jet undetected


Left plot: reducible background from $Z+{\rm jets}$ a factor ${\sim}1000$ smaller than irreducible $Z\to\nu\nu$


Example: effect of dead cells

Preliminary ATLAS study (R. Mc.Pherson, K. Voss)

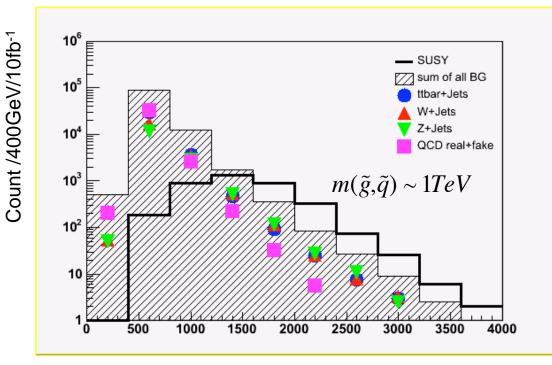
Assume readout of a certain number of calo cells not working. Evaluate effect on E_T

Apply to $Z \rightarrow ee$ sample

Aim of the exercise: evaluate sensitivity of $Z \to \ell\ell$ as a diagnostic of detector imperfections affecting E_T studies

Evaluate the possibility of applying event-by-event corrections

Control of E_T from Standard Model processes


Real E_T from ν production in SM events:

SUSY selection:

- $E_T > 100 \text{ GeV}$
- At least 1 jet with $p_T > 100 \text{ GeV}$
- At least 4 jets with $p_T > 50 \text{ GeV}$

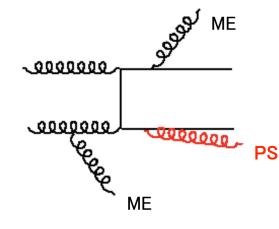
Plot

$$M_{\text{eff}} = \sum_{i=1}^{4} |p_{T(jet_i)}| + E_T^{\text{miss}}$$

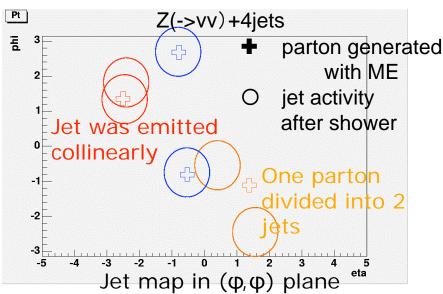
Effective Mass(GeV) = mE_{τ}

Comparable contributions from three processes:

- $\bar{t}t+$ jets W+jets Z+jets


Counting experiment: need precise estimate of background processes in signal region

SM backgrounds: Monte Carlo issues


SUSY processes: high multiplicity of final state jets from cascade decays Require high jet multiplicity to reject backgrounds: ~ 4 jets Additional jets in $\bar{t}t, W, Z$, production from QCD radiation

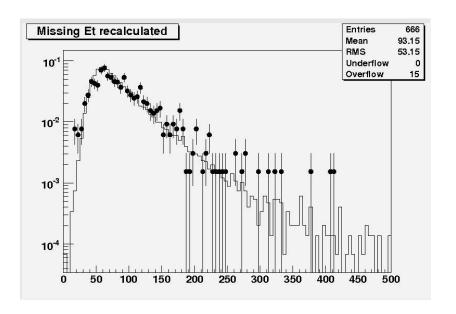
Two possible way of generating additional jets:

- Parton showering (PS): good in collinear region, but underestimates emission of high- p_T jets
- Matrix Element (ME): requires cuts at generation to regularize collinear and infrared divegencies

Optimal description of events with both ME and PS switched on Need prescription to avoid double counting, i.e. kinematic configurations produced by both techniques Final number of jets in event complicated convolution of ME, PS, and experimental definition of jets

Contributions from Z+1,2,3,4,5... jets to experimental 4-jet sample

Prescriptions available (MLM, CKKW) to obtain MC predictions for experimental Z+4 jets sample as a combination of all the exclusivve Z+ n jets sample


Very active field, experimental effort to see how well different prescriptions match Tevatron data BUT, tuning of matching valid for Tevatron might not be valid in LHC regime

At the LHC Develop strategies based on the combined use of MC and data to correctly predict the backgrounds

The simplest case: $Z \rightarrow \nu\nu + \text{jets}$

Select a sample of $Z \to ee+$ multijets from data using $Z \to$ ee peak

Apply same cuts as for SUSY analysis, throw away electrons and calculate p_T of events

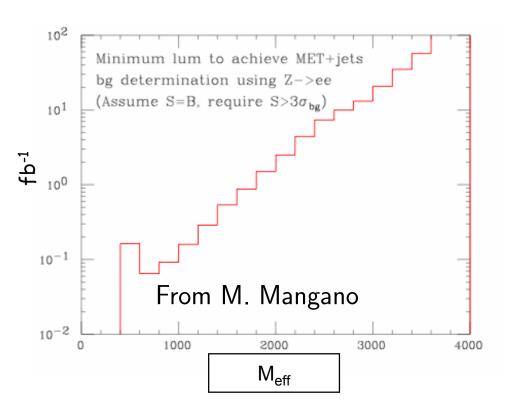
Select $Z \to ee$ events with low E_T

Normalisation taking equal areas, calculation of normalisation form data still to be done

In order to have correct normalisation and shape correct for:

- Efficiency for electrons (experimental)
- ullet E_T distorsion from subtracting electrons from calo
- Acceptance of e⁺e⁻ pairs (MonteCarlo)

Need to evaluate systematic error from these corrections


Normalisation needs to be multiplied by $BR(Z \to \nu \nu)/BR(Z \to ee) \sim 6$

Assuming SUSY signal $\sim Z \to \nu \nu$ bg, evaluate luminosity necessary for having $N_{SUSY} > 3 \times \sigma_{bq}$

Stat error on background:

$$\sigma_{bg} = \sqrt{N(Z \to ee)} \times \frac{BR(Z \to \nu\nu)}{BR(Z \to ee)}$$

For each bin where normalisation required, need ~ 10 reconstructed $Z\to\ell\ell$ events. Need to consider acceptance/efficiency factors as well

Several hundred pb^{-1} required. Sufficient if we believe in shape, and only need normalisation. Much more needed to perform bin-by-bin normalisation

Additional inclusive signatures

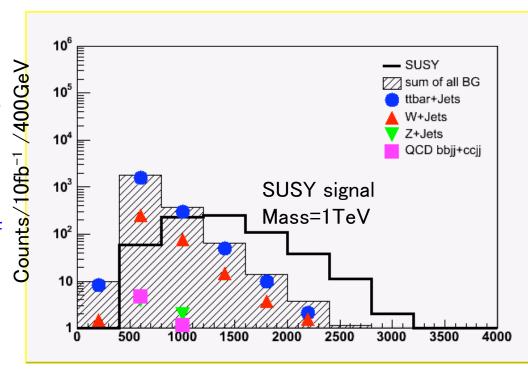
 E_T +jets signature is most powerful and least model-dependent

SM and instrumental backgrounds might require long time before convincing signal can be claimed

With most recent evaluation of SM backgrounds, shoulder in M_{eff} distribution disappears

Need to optimize search strategy by tackling in parallel all of the inclusive discovery channels

Example: single lepton + jets + E_T


Smaller number of backgrounds: $ar{t}t$ dominant,

easier to control

Shoulder might be observable

Main experimental difficulty is correct estimate of

contribution from fake leptons

1-lepton inclusive analysis. Control of top background

Try to develop method to use top data to understand top background Preliminary ATLAS exercise (Dan Tovey)

Standard semileptonic top analysis:

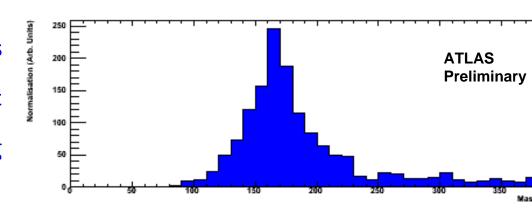
• $P_t(lep) > 20 \text{ GeV}$, $E_T > 20 \text{ GeV}$

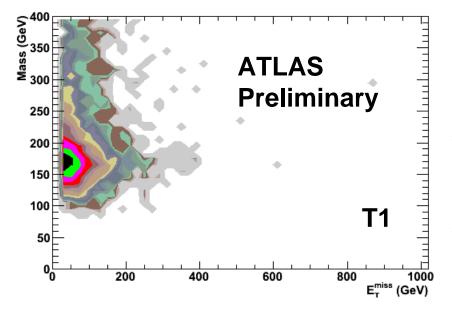
Very similar to cuts for SUSY analysis with looser

 $\bullet \geq 4$ jets with $P_T > 40$ GeV

 $\not\!\!E_T$ requirement

• ≥ 2 *b*-tagged jets


If harden E_T cuts, sample contaminated with SUSY

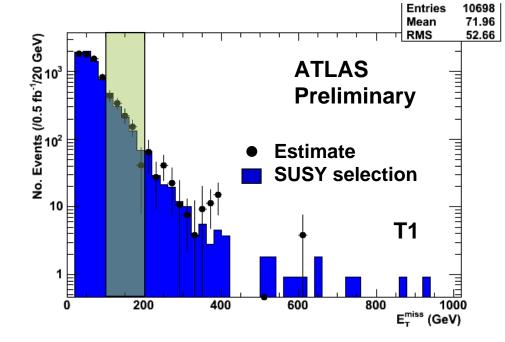

Possible approach:

- Select semi-leptonic top candidates (standard cuts: what b-tag available?)
- ullet Fully reconstruct top events from $ot\!\!E_T$ and W mass constraint
- ⇒ obtain pure top sample with no SUSY contamination
- ullet Apply SUSY selection criteria to pure top sample, and plot E_T distribution
- ullet normalize pure top sample to data at low E_T
- ullet obtain prediction of amount of top background at high E_T

Top mass reconstruction

- Reconstruct semi-leptonic top mass from lepton $+ E_T$ and W mass constraint
- ullet Reduce jet combinatorics by selecting highest p_T candidate

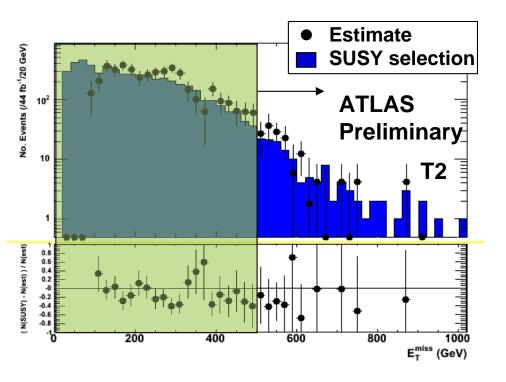
T1 (inclusive) T2 ($P_T^{top} > 500$ GeV)


Normalising the estimate

"Estimate": fully recontructed top sample after side-band subtraction

Normalise estimate to "SUSY selection" sample, to account for relative efficiency of top selection

Reminder: "SUSY Selection" sample: tt events with no top mass constraint


- $E_T > 20$ GeV (to be hardened later)
- \bullet At least 4 GeV with $p_T > 40$ GeV
- \bullet Exactly 1 lepton with $p_T > 20$ GeV

In low E_T region (100 GeV-200 GeV): SUSY signal expected to be small Assume low available statistics (0.5 fb⁻¹) of fully simulated top Obtain scaling factor of ~ 4

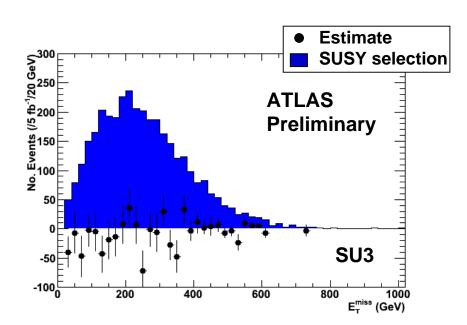
Background estimates

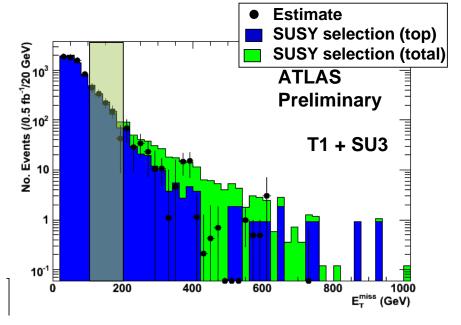
Verify if method works on sample T_2 ($P_T(top) > 500$ GeV) Compare number of events with $E_T > 500$ GeV in "SUSY selection" sample to background estimate

With 44 fb $^{-1}$:

- Found 174 ± 13 Ev (stat)
- Expected 198 ± 38 (stat) \rightarrow 20%

Statistical error mainly from sideband subtraction Negligible contribution from normalisation


SUSY


What happens if SUSY signal present?
Study effect by mixing inclusive top sample

Squark-gluino mass scale ~ 600 GeV.

Repeat previous steps

and SUSY SU3 sample:

Normalisation procedure OK for SU3 and 100-200 GeV window

Sideband subtraction seems to work

Example of possible approach, work in progress

2-leptons $+ E_T + \text{jets}$ inclusive search

Significantly lower reach than other channels, but also lower backgrounds Variuos different topologies, corresponding to different configuration of SM backgrounds

- Opposite-Sign Same-Flavour
- Opposite-Sign Opposite-Flavour
- Same-Sign Same-flavour
- Same-sign Opposite-Flavour

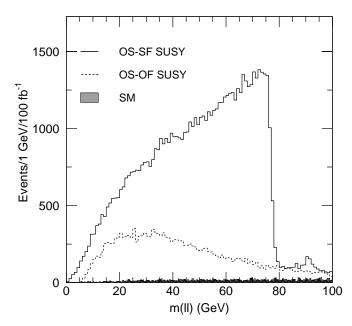
Interesting possibility: flavour-correlated signal. Example:

$$\tilde{q}_L \to \tilde{\chi}_2^0 \quad q$$

$$\downarrow \qquad \tilde{\ell}_R^{\pm} \quad \ell^{\mp}$$

$$\downarrow \qquad \tilde{\chi}_1^0 \quad \ell^{\pm}$$

Only $Z/\gamma \to e^+e^-, \mu^+\mu^-$ has correlated flavours


All backgrounds except Z can be exactly subtracted (modulo lepton efficiencies)

Example: mSUGRA point SPS1a

Isolate SUSY signal by requiring:

- At least four jets: $p_{T,1} > 150 \text{ GeV}$, $p_{T,2} > 100 \text{ GeV}$, $p_{T,3} > 50 \text{ GeV}$.
- $M_{\text{eff}} \equiv E_{T,\text{miss}} + p_{T,1} + p_{T,2} + p_{T,3} + p_{T,4} > 600 \text{ GeV}, E_{T,\text{miss}} > \max(100 \text{ GeV}, 0.2M_{\text{eff}})$
- ullet Exactly two opposite-sign same-flavour e, μ (OSSF) with $p_T(l) > 20$ GeV and $p_T(l) > 10$ GeV

Build lepton-lepton invariant mass for selected events

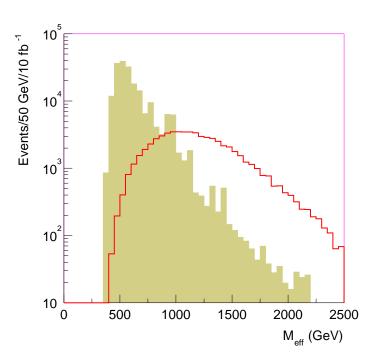
SM background almost negligible

Subtract SUSY and SM background using

flavour correlation:

$$e^+e^- + \mu^+\mu^- - e^{\pm}\mu^{\mp}$$

Clear kinematic feature which can not be produced by SM


SUSY mass scale from inclusive analysis

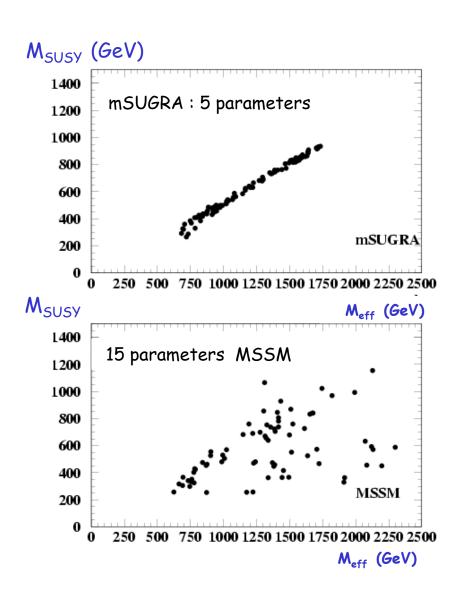
Start from multijet $+ \not\!\!E_T$ signature.

Simple variable sensitive to sparticle mass scale:

$$M_{\text{eff}} = \sum_{i} |p_{T(i)}| + E_T^{\text{miss}}$$

where $p_{T(i)}$ is the transverse momentum of jet i

 $M_{
m eff}$ distribution for signal (red) and background (brown)


(mSUGRA
$$m_0=100$$
 GeV, $m_1/2=300$ GeV, $\tan\beta=10$, $A=0$, $\mu>0$)

A cut on $M_{\rm eff}$ allows to separate the signal from SM background

The $M_{\rm eff}$ distribution shows a peak which moves with the SUSY mass scale.

Define the SUSY mass scale as:

$$M_{
m susy}^{
m eff} = \left(M_{
m susy} - rac{M_{\chi}^2}{M_{
m susy}} \right), ext{ with } M_{
m SUSY} \equiv rac{\Sigma_i M_i \sigma_i}{\Sigma_i \sigma_i}$$

Estimate peak in $M_{\rm eff}$ by a gaussian fit to the background-subtracted signal distributions

Test the correlation of $M_{\rm eff}$ with $M_{\rm susy}^{\rm eff}$ on a random set of models: mSUGRA and MSSM

Excellent correlation in mSUGRA, acceptable for MSSM

% precision on M_{SUSY} vs M_{SUSY} _{5 bb} ந (a) mSUGRA M_{SUSY} (GeV) o_{total} (%) (b) MSSM

Evaluate uncertainty in mass scale from spread in correlation plots.

- 10 fb $^{-1}$ stars
- 100 fb $^{-1}$ open circles
- 1000 fb $^{-1}$ filled circles
- $\sim 10\%$ precision on SUSY mass scale for one year at high luminosity

What might we know after inclusive analyses?

Assume we have a MSSM-like SUSY model with $m_{\tilde{q}} \sim m_{tg} \sim 600$ GeV Observe excesses in $E_T + jets$ inclusive, +1 lepton, +2 leptons

- ullet Undetectable particles in the final state $ot\hspace{-1.5em}E_T$
- ullet Production of particles with mass \sim 600 GeV (M_{eff} study) and with couplings of \sim QCD strength (X-section)
- Some of the produced particles are coloured (jets in the final state)
- Some of the new particles are Majorana (excess of same-sign lepton pairs)
- ullet Lepton flavour \sim conserved in first two generations (same number of leptons and muons)
- Decays of neutral particle into two particles with lepton quantum numbers (excess of Opposite-Sign/Same-Flavour (OS-SF) leptons)

•

Some sparse pieces of a giant jigsaw puzzle. Proceed to try exclusive analyses to fill in some of the gaps