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Introduction

The tachyon of Bosonic Open String Theory

Open bosonic string theory has a tachyonic mode. (This
motivated the introduction of susy and superstrings...)
With the advent of D-branes it has been understood that open
strings are excitations of solitonic objects of closed string theory.
Natural interpretation of the tachyon of open bosonic string theory:
the underlying solitonic object is unstable.
This idea can be tested in a concrete way within a string field
theory formulation of bosonic open strings.
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Introduction

Witten’s Open String Field Theory

Bosonic Open String Field Theory action around the perturbative
vacuum in 26d (Witten ‘86)

Γ[Ψ] =
1
2
(
Ψ,QBRS Ψ

)
+

1
3
(
Ψ,Ψ ?Ψ

)
Ψ is the classical open string field, a state in the open string Fock
space of ghost number 0.
? is Witten’s associative and non-commutative open string product.
QBRS is the BRS operator of the CFT world-sheet theory.
Gauge invariance

δΨ = QBRS C +
[
Ψ ?, C

]
where C is a ghost number -1 gauge parameter.
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Introduction

Sen’s conjectures about OSFT

Sen (‘99) proposed a sort of Higgs mechanism for bosonic OSFT.
He conjectured that the non-linear classical equations of motion of
OSFT

QBRS φ+ φ ? φ = 0

possess a translation invariant solution whose energy density
exactly cancels the D25 brane tension:

Γ[φ] ≡ 1
2
(
φ,QBRS φ

)
+

1
3
(
φ, φ ? φ

)
= − 1

2π2
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Introduction

Sen’s conjectures about OSFT

The existence of a solution with such a property has been
demonstrated first numerically (Sen&Zwiebach ‘99, Moeller
&Taylor ‘00, Gaiotto &Rastelli ‘00) and more recently analytically
(Schnabl ‘05).
This solution, the tachyonic vacuum, is believed to be the
(classically) stable non-perturbative vacuum of OSFT representing
the closed string vacuum with no open strings.
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OSFT around the Tachyonic Vacuum

Sen’s third conjecture

The closed string interpretation requires that the spectrum of
quadratic fluctuations around this classical solution be not only
tachyon-free but also gauge-trivial.
Expand the string field around the tachyonic vacuum

Ψ = φ+ Ψ̃

The new action has the same form as the perturbative action

Γ̃[Ψ̃] =
1
2
(
Ψ̃, Q̃ Ψ̃

)
+

1
3
(
Ψ̃, Ψ̃ ? Ψ̃

)
with the modified kinetic operator Q̃

Q̃Ψ̃ ≡ QBRS Ψ̃ +
[
φ ?, Ψ̃

]
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OSFT around the Tachyonic Vacuum

The flatness equation for φ ensures the nilpotency of Q̃:

Q̃2 = 0

The action around the stable vacuum is gauge-invariant:

δ Ψ̃ = Q̃ C +
[
Ψ̃ ?, C

]
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OSFT around the Tachyonic Vacuum

The Fourier transformed linearized e.o.m’s around the tachyonic
vacuum are:

Q̃(p) Ψ(0)(p) = 0

Ψ(0)(p) are the polarization vectors of the open string field.
Perturbative physical states (i.e. string vertex operators) are
solutions of these equations modulo linearized gauge
transformations. (i.e. “transverse” polarization vectors modulo
“longitudinal” ones)
Mathematically, the cohomology

H(0)(Q̃(p)) =
Q̃ closed states

Q̃ trivial states

describes the physical particles with mass squared m2 = −p2.
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OSFT around the Tachyonic Vacuum

In conclusion, Sen’s expectation is that H(0)(Q̃) vanishes for all p2.
The theory should have no “local” particle-like states. In this sense
this is a “topological” field theory.
Closed string states should manifest themselves as composites,
solitons,...?
OSFT in the tachyonic vacuum provides a description of closed
string in terms of open string (brane) degrees of freedom: sort of
holography without supersymmetry?
Closed string tachyon should appear as a 1-loop instability?
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Physical States via Fadeev-Popov Determinants

Physical states in gauge theories

To count physical states in gauge theories one can use two methods.

The “canonical” counting. No gauge- fixing:

# of phys states at p2 = −m2=
# of sols of the lin eqs of motions - # of gauge-trivial sols
We have seen that for OSFT this formula becomes

# of phys states at p2 = −m2 = H(0)(Q̃(p))

11 / 46



Physical States via Fadeev-Popov Determinants

Physical states in gauge theories

To count physical states in gauge theories one can use two methods.

The “canonical” counting. No gauge- fixing:

# of phys states at p2 = −m2=
# of sols of the lin eqs of motions - # of gauge-trivial sols
We have seen that for OSFT this formula becomes

# of phys states at p2 = −m2 = H(0)(Q̃(p))

11 / 46



Physical States via Fadeev-Popov Determinants

The “lagrangian” counting. It involves the gauge-fixed Lagrangian.
Suppose for the moment that we have only one generation of
ghost fields.
Let dmatter ,ghosts be order of poles at p2 = −m2 of the propagators
of matter and ghosts fields

# of phys states at p2 = −m2 =dmatter − 2 dghosts
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Physical States via Fadeev-Popov Determinants

Example 1: Electrodynamics in 3+1 Dimensions

“Canonical” counting: at p2 = 0

# of transverse photons {pµ εµ(p) = 0} -
- # of longitudinal photons {εµ(p) = pµ χ(p)}=
= 3 − 1 = 2
“Lagrangian” counting:

Lg.f =
1
2

Aµp2 Aµ(p) + c̄(p)p2 c(p)

and
# number of phys states = 4 − 2× 1 = 2
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Physical States via Fadeev-Popov Determinants

Example 2: Chern-Simons in 2+1 Dimensions

“Canonical” counting for any p2

# physical states= # sols of lin e.o.m. - # trivial sols=1-1=0

“Lagrangian” counting in Landau gauge:

det Kboson(p) = det
(
εµνρpρ pµ

−pν 0

)
= p4 ⇒ dmatter = 2

det Kghost(p) = p2 ⇒ dghost = 1

# physical states= 2 − 2× 1 = 0
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Physical States via Fadeev-Popov Determinants

Non-gauge invariant approximations/regularizations

“Canonical” counting is problematic if your approximation and/or
regularization is not gauge-invariant.
The problem is that one looses the concept of gauge-trivial
solutions (i.e. “longitudinal” polarizations)
The (only) known approximation scheme for OSFT is called Level
Truncation (LT): it includes a finite number of open string states in
the expansion of the string field, those whose level is less than a
given number L.
LT was used quite successfully to show that Sen’s classical
tachyon solution does exists.
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Physical States via Fadeev-Popov Determinants

Non-gauge invariant approximations/regularizations

LT respects gauge-invariance in the perturbative vacuum since
the level operator commute with QBRS.
LT does not respect gauge-invariance in the tachyonic vacuum
since the level operator does not commute with Q̃.
In the gauge-fixed framework breaking of gauge-invariance shows
up as “spurious” matter field propagators poles not being exactly
degenerate with ghost propagator poles. As the
regularization/approximation parameter is removed these poles
should smoothly come together.
In the exact theory all matter propagator poles should be exactly
cancelled by ghost propagators poles.
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Physical States via Fadeev-Popov Determinants

Gauge-fixed OSFT

Pick the Siegel gauge:

b0 Ψ0 = 0

and define the associated operators

L̃0 ≡ {b0, Q̃}

Fadeev-Popov procedure leads to an infinite number of
ghost-for-ghost fields (Bochicchio ‘87, Thorn ‘87):

Γ̃(2)

g.f . =
1
2
(
φ0, c0 L̃0 φ0

)
+

∞∑
n=1

(
φn, c0 L̃0 φ−n

)
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Physical States via Fadeev-Popov Determinants

OSFT Physical States Counting

Introduce the determinants of the kinetic operators L̃(n)

0 (p) in
momentum space:

∆(n)(p2) ≡ det L̃(n)

0 (p)

Were not for gauge-invariance, physical states would correspond
to zeros of ∆(0)(p2): if

∆(0)(p2) = a0 (p2 + m2)d0(1 + O(p2 + m2))

there would be d0 physical states with mass m.
Gauge invariance and ghosts fields change the counting.

18 / 46
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Physical States via Fadeev-Popov Determinants

The number of physical states of mass m is given by the
Fadeev-Popov index (Giusto & C.I. ‘04):

IFP(m) = d0 − 2 d1 + 2 d2 + · · · =
∞∑

n=−∞
(−1)n dn

where the dn are degrees of the poles of the second quantized
ghost fields:

∆(n)(p2) = ∆(−n)(p2) =

= an (p2 + m2)dn(1 + O(p2 + m2))
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Physical States via Fadeev-Popov Determinants

This formula applies to the general case of an arbitrary number of
ghost generations.
The numbers dn are gauge-dependent.
The index IFP(m) is gauge-invariant

IFP(m) = dimH(0)(Q̃(p)) with − p2 = m2

Sen’s (third) conjecture for OSFT in the tachyonic vacuum is that
IFP(m) vanishes for all m.
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Physical States via Fadeev-Popov Determinants

In the exact theory physical states of mass m2 are in general
associated to a multiplet of determinants ∆(n)(p2) with different n’s
that vanish simultaneously at −p2 = m2.
Since level truncation breaks BRS invariance we expect that the
zeros of the determinants in the same multiplet, when evaluated at
finite L, would be only approximately coincident.
Using the index formula to compute the number of physical states
is meaningful when the splitting between approximately coincident
determinant zeros is significantly smaller than the distance
between the masses of different multiplets.
It is expected that matter and ghost propagators poles begin to
cluster into well-defined approximately degenerate multiplets for
levels L that are increasingly large as m2 = −p2 →∞. One can
probe reliably only up to masses with m2 ∼ L.
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21 / 46



Physical States via Fadeev-Popov Determinants

In the exact theory physical states of mass m2 are in general
associated to a multiplet of determinants ∆(n)(p2) with different n’s
that vanish simultaneously at −p2 = m2.
Since level truncation breaks BRS invariance we expect that the
zeros of the determinants in the same multiplet, when evaluated at
finite L, would be only approximately coincident.
Using the index formula to compute the number of physical states
is meaningful when the splitting between approximately coincident
determinant zeros is significantly smaller than the distance
between the masses of different multiplets.
It is expected that matter and ghost propagators poles begin to
cluster into well-defined approximately degenerate multiplets for
levels L that are increasingly large as m2 = −p2 →∞. One can
probe reliably only up to masses with m2 ∼ L.

21 / 46



Physical States via Fadeev-Popov Determinants

The numerical evaluation

In the theory truncated at level L, the operators L̃(n)

0 (p) reduce to
finite dimensional matrices.
For a given L, the L̃(n)

0 (p) vanish identically for n greater than a
certain nL which depends on the level. Thus only a finite number
of Fadeev-Popov determinants enter the analysis at any given
level L.
The tachyon solution is a Lorentz scalar: thus one can restrict the
LT matrices L̃(n)

0 (p) to sectors with definite Lorentz indices:
scalars, vectors, ...
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Physical States via Fadeev-Popov Determinants

Q̃ commutes with the twist parity operator (−1)N̂. The analysis
can be restricted to spaces of definite twist parity:

L̃(n)

0 (p) = L̃(n,+)

0 (p)⊕ L̃(n,−)

0 (p)

There exists a SU(1,1) symmetry of the CFT ghost sector
(Zwiebach ‘00):

J+ = {Q, c0} =
∞∑

n=1

n c−ncn J− =
∞∑

n=1

1
n

b−nbn

J3 =
1
2

∞∑
n=1

(c−nbn − b−ncn)

which is also a simmetry of OSFT equations of motion in the
Siegel gauge.
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Physical States via Fadeev-Popov Determinants

The tachyon solution turns out to be a singlet of the SU(1,1)
algebra.
This SU(1,1) symmetry is not broken by LT since its generators
commute with the level
Multiplets of determinants ∆(n)(p2) that vanish at a given
p2 = −m2 organize themselves into representations of SU(1,1).
FP index rewrites

IFP(m) =
∑

J

dJ (2 J + 1) (−1)2 J
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Physical States via Fadeev-Popov Determinants

Dimensions of scalar matrices L̃(n,±)

0 (p)

Table: Number of b0-invariant scalar states at up to level 10.
Level ghost # 0 ghost # -1 ghost # -2 ghost # -3 ghost # -4

3 (odd) 9 6 1 0 0
4 (even) 24 13 2 0 0
5 (odd) 45 30 7 0 0
6 (even) 99 61 14 1 0
7 (odd) 183 125 35 2 0
8 (even) 363 240 68 7 0
9 (odd) 655 458 145 15 0

10 (even) 1216 841 272 36 1
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Physical States via Fadeev-Popov Determinants

Dimensions of vector matrices L̃(n,±)

0 (p)

Table: Number of b0-invariant vector states up to level 10.

Level ghost # 0 ghost # -1 ghost # -2 ghost # -3
3 (odd) 7 3 0 0
4 (even) 16 9 1 0
5 (odd) 40 22 3 0
6 (even) 85 52 10 0
7 (odd) 184 113 24 1
8 (even) 367 238 59 3
9 (odd) 730 478 127 10

10 (even) 1385 936 272 25
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Physical States via Fadeev-Popov Determinants

Location of FP zeros: Scalars, Odd Sector

Location of the zeros of FP determinants ∆(n)

− (p2) for n = 0,−1,−2 at levels
L = 4, . . . ,9 up to p2 = −10, in the odd scalar sector

-10 -8 -6 -4 -2 p24

5

6

7

8

9

10

L

J!3!2J!1
J!1!2J!0
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Physical States via Fadeev-Popov Determinants

Location of FP zeros: Scalars, Even Sector

Location of the zeros of FP determinants of ∆(n)

+ (p2) for n = 0,−1,−2 at
levels L = 4, . . . ,10 up to p2 = −10, in the even scalar sector

-10 -8 -6 -4 -2p
24

5

6

7

8

9

10

L
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Physical States via Fadeev-Popov Determinants

Location of FP zeros: Vectors, Odd Sector

Location of the zeros of FP determinants ∆(n)

− (p2) for n = 0,−1,−2 at levels
L = 4, . . . ,9 up to p2 = −10, in the odd vector sector

-10 -8 -6 -4 -2p
24

5

6

7

8

9

10

L

J!3!2J!1
J!1!2J!0
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Physical States via Fadeev-Popov Determinants

Location of FP zeros: Vectors, Even Sector

Location of the zeros of FP determinants of ∆(n)

+ (p2) for n = 0,−1,−2 at
levels L = 4, . . . ,10 up to p2 = −10, in the even vector sector

-10 -8 -6 -4 -2
4

5

6

7

8

9

10
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Physical States via Fadeev-Popov Determinants

Scalars, Odd Sector

0.050.10.150.20.250.30.350.4
1
L

-2.75
-2.5
-2.25

-2
-1.75
-1.5
-1.25

-1
p2

The first group of zeros of ∆(n)

− (p2) at p2 ≈ −2.0 as the Level L varies
L = 3,5,7,9.

red = ghost number 0, SU(1, 1) singlets

green = ghost number ±1, SU(1, 1) doublets

blue = ghost number {±2, 0} , SU(1, 1) triplets
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Physical States via Fadeev-Popov Determinants

Vectors, Even Sector

0.050.10.150.20.250.30.350.4
1
L
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-3
p2

The first group of zeros of ∆(n)

+ (p2) at p2 ≈ −4.0 as the Level L varies
L = 4,6,8,10.

red = ghost number 0, SU(1, 1) singlets

green = ghost number ±1 , SU(1, 1) doublets

blue = ghost number {±2, 0} , SU(1, 1) triplets
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Physical States via Fadeev-Popov Determinants

Vectors, Odd Sector
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− (p2) at p2 ≈ −6.0 as the Level L varies
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red = ghost number 0, SU(1, 1) singlets

green = ghost number ±1, SU(1, 1) doublets

blue = ghost number {±2, 0}, SU(1, 1) triplets
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Discussion

Confirmations

For all these multiples of zeros FP-index does vanish:

IFP(m) = d0 − 2 d1 + 2 d2 = 2− 2 · 2 + 2 · 1 = 0

in agreement with Sen’s conjecture.
The first multiplets of zeros on the p2 axis appear at
−p2 = m2 ≈ 2.0 for scalars and −p2 = m2 ≈ 4.0 for vectors.
These multiplets of zeros are approximately degenerate with good
accuracy. This means that in the region to the right of p2 ≈ 0 the
LT approximation is certainly trustworthy.
This shows that the both tachyon and photon disappear from the
physical spectrum of Witten OSFT around the tachyonic vacuum.
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Discussion

Surprise 1

Extrapolated zeros with different J agree with remarkable
accuracy.

Table: Determinant zeros extrapolated at L = ∞

Sector J=0 J=1/2 J=1
scalar odd -1.99172 -2.03279; -1.97541 -2.04905
vector even -3.98938 -3.99494; -3.99087 -3.98803
vector odd -5.97751 -5.96576; -6.00275 -5.78701

It is tempting to conjecture from these data that the exact values
for the degenerate zeros are integers !

m2
scalar,− = 2.0 m2

vector,+ = 4.0 m2
vector,− = 6.0

35 / 46



Discussion

Surprise 1

Extrapolated zeros with different J agree with remarkable
accuracy.

Table: Determinant zeros extrapolated at L = ∞

Sector J=0 J=1/2 J=1
scalar odd -1.99172 -2.03279; -1.97541 -2.04905
vector even -3.98938 -3.99494; -3.99087 -3.98803
vector odd -5.97751 -5.96576; -6.00275 -5.78701

It is tempting to conjecture from these data that the exact values
for the degenerate zeros are integers !

m2
scalar,− = 2.0 m2

vector,+ = 4.0 m2
vector,− = 6.0

35 / 46



Discussion

Surprise 2

Vanishing eigenvalues of scalar odd kinetic operators for n = ±1 and
p2 ≈ −2 at level L=9.

-2.75-2.5-2.25 -2 -1.75-1.5-1.25
 2
p

-0.2
-0.15
-0.1
-0.05

0.05
0.1
0.15
0.2

C
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Discussion

Surprise 2

Vanishing eigenvalues of vector odd kinetic operators for n = ±1 and
p2 ≈ −6 at level L=9.

-6.4 -6.2 -5.8 -5.6
 2
p

-0.02

-0.015
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Discussion

Surprise 2

Vanishing eigenvalues of vector even kinetic operators for n = ±1 and
p2 ≈ −6 at level L=10.

-4.4 -4.2 -3.8 -3.6
 2
p

-0.02

-0.015

-0.01

-0.005

0.005

0.01

0.015

0.02
C
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Discussion

Surprise 2

This means that for p2 ≈ −m2
i with m2

i = 2.0,4.0,6.0, . . . the
OSFT quadratic action has the form

Γ(2) =
1
2
ψ

(0)
s (−p)(p2 + m2

i )ψ
(0)
s (p) +

+
1
2
ψ

(0)
t (−p)(p2 + m2

i )ψ
(0)
t (p) +

+ψ(−1)(−p)
[
p2 + m2

i
]2
ψ(1)(p) +

+ψ
(−2)
t (−p)(p2 + m2

i )ψ
(2)
t (p)
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Discussion

BRS cohomologies at non-standard ghost numbers

Let vs
0 be the SU(1,1) singlet, {v±1} the doublet and {v t

0, v±2}
zero modes of the kinetic operators with −p2 = mi

2 of the exact
theory

L̃(±2)

0 (p) v±2 = L̃(±1)

0 (p) v±1 = L̃(0)

0 (p) vs
0 = L̃(0)

0 (p) v t
0 = 0

Q̃ acts on the zero modes space W̃ = {vs
0 , v

t
0, v±2, v±1} (since

L̃0 = {Q̃,b0}).
Moreover this action commutes with J+: [Q̃, J+] = 0

The Witten index of the supersymmetry Q̃ on W̃ is 4− 2 = +2.
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Discussion

BRS cohomologies at non-standard ghost numbers

This greatly restricts the possible actions of Q̃ on the space of
zero modes. Only 4 possible different representations.

The cohomologies hn(Q̃, W̃ ) of Q̃ restricted to the zero mode
space W̃ are well defined. They are called relative (to the
gauge-choice) cohomologies.

hn(Q̃, W̃ ) are gauge-dependent: defined on states which are both
b0and L̃0-invariant.
Each of the 4 possible actions of Q̃ on W̃ is associated to different
values of the hn(Q̃, W̃ )’s.
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Discussion

BRS cohomologies at non-standard ghost numbers

The map between hn(Q̃, W̃ ) and H(n)(Q̃) is neither surjective nor
injective.
The relation between these cohomologies is controlled by the
exact sequence

· · · −→ h̃(n)(Q̃) −→ H(n)(Q̃) −→ h̃(−n+1)(Q̃) −→ h̃(n+1)(Q̃) −→ · · ·

(together with another sister sequence).
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Discussion

BRS cohomologies at non-standard ghost numbers

All but one of the 4 actions of Q̃ on W̃ are excluded by the exact
sequences, assuming H(0)(Q̃) = 0 (i.e. Sen’s conjecture):

Q̃ v±2 = 0 Q̃v±1 = 0 Q̃v t
0 = 0 Q̃ vs

0 = v1

This means that the cohomologies of Q̃ are not all empty

dimH(−1)(Q̃)|p2=−m̄2 = dimH(−2)(Q̃)|p2=−m̄2 = 1

The zero modes are the non-trivial elements of the cohomologies

[v−1] ∈ H(−1)(Q̃) [v−2] ∈ H(−2)(Q̃)
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0 = 0 Q̃ vs

0 = v1

This means that the cohomologies of Q̃ are not all empty

dimH(−1)(Q̃)|p2=−m̄2 = dimH(−2)(Q̃)|p2=−m̄2 = 1

The zero modes are the non-trivial elements of the cohomologies

[v−1] ∈ H(−1)(Q̃) [v−2] ∈ H(−2)(Q̃)
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Discussion

Implications

Vacuum String Field Theory approach to OSFT in the stable
vacuum (Rastelli&Sen&Zwiebach ‘02) which assumes a trivial Q̃
might be missing some aspect of the theory in the tachyonic
vacuum
Formal “exact" (i.e. not numerical) proof of Sen’s conjecture
(H(0)(Q̃) = 0) (Ellwood&Schnabl ‘06) also implies that H(n)(Q̃) = 0
for n 6= 0. Our results indicate that the tools involved (the identity
state) might be not well defined.
The (apparent) integer values of −p2 = 2,4,6 we found for the
zeros modes is possibly understood since we showed that these
zeros modes do correspond to gauge-invariant quantities. This
(possible) integrality is a hint that the full spectrum might be
accessible to exact analysis.
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Discussion

Fields with n = −1 are gauge-transformation parameters.
H(−1)(Q̃) 6= 0 means that there are non-trivial gauge rigid gauge
transformations that leave the tachyon vacuum invariant.

Q̃ C(−1) = 0 = QBRS C(−1) + [φ,C(−1)] = δC φ

Conjecture: are the elements we found for −p2 = 2,4,6, . . . part
of an infinite-dimensional symmetry that characterizes the
tachyonic vacuum?
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Discussion

Summary

Numerical findings confirm that

dimH(0)(Q̃) = 0 ⇔ no open string physical states

but they also indicate that
The cohomology of Q̃ is not empty at “exotic” ghost numbers, for
integer values of −p2 = 2,4,6, . . ..
Maybe this is the tip of an iceberg: a huge infinite dimensional
symmetry of the tachyonic vacuum.
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