Introductio Motivations Outline

Orbifolds

Geometry Gauge symmetry breaking Constraints and Classification

Smooth manifold

The guiding principle Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Conclusions and Outlook

Orbifolds vs smooth manifolds with fluxes reconciliating two different approaches to string phenomenology

Michele Trapletti

Institut für Theoretische Physik, Universität Heidelberg

Based on hep-th/0612030 (JHEP0701) with G. Honecker hep-th/0701227 (JHEP07??) with S. Groot Nibbelink and M. Walter

・ コット (雪) (小田) (コット) 日

Sac

Motivations I: The String Phenomenology "Paradigm"

- Introduction
- Motivations Outline
- Orbifolds
- Geometry
- Gauge symmetry breaking
- Constraints and
- Smooth manifold
- The guiding principle Constraints: almost a classification Gauge symmetry breaking
- Matching the approaches A formal example An explicit example
- Conclusions and Outlook

- Low energy (Heterotic) string theory
- \Rightarrow d = 10, \mathcal{N} = 1 SUGRA, SO(32) SYM.
- Necessary a compactification on an "internal space" $\mathbb{M}^{10} \to \mathbb{M}^4 \times K^6$,
- \Rightarrow such that SUSY is reduced to $d = 4 \mathcal{N} = 1$,
- \Rightarrow and the gauge symmetry is also reduced.
- More in general, we have to select a background for all the fields that are scalars of the 4d Minkowski group (internal components of gauge bosons, 2-forms, etc.):

$$\mathsf{A}^M \longrightarrow (\mathcal{A}^\mu, \, \mathcal{A}^i) \;\; \Rightarrow \;\; \langle \mathcal{A}^i
angle
eq 0.$$

⇒ Flux compactification: for us now mainly gauge fluxes.

Motivations II: Which background?

Introduction

Motivations

Outline

Orbifolds

- Geometry Gauge symmetry
- breaking
- Classification

Smooth manifold

- The guiding principle Constraints: almost a classification Gauge symmetry breaking
- Matching the approaches A formal example An explicit example
- Conclusions and Outlook

• Toroidal orbifold

• Smooth manifold

- \Rightarrow Exact string quantization.
- ⇒ Complete control on the spectrum of the model.
- ⇒ Bad control of the (twisted field) lagrangian.
- ⇒ No control on the potential of the scalar fields.
 - \Rightarrow No string quantization.
 - \Rightarrow Only chiral spectrum known.
 - ⇒ "Controlled" stabilization of scalars through (closed string) fluxes.

Reconciliating the two approaches

Introductio Motivations Outline

Orbifolds

Geometry Gauge symmetry

breaking Constraints and Classification

Smooth manifold

The guiding principle Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Conclusions and Outlook Each model built via an orbifold compactification of heterotic string has a counterpart, built via a compactification on a smooth manifold (in the presence of U(1) gauge fluxes).

Outline

I Review of heterotic string orbifolds.

II String models on smooth spaces with U(1) fluxes. III Merging the approaches:

- Formal matching: the T^4/Z_2 models vs K3 models.
- An explicit example: Heterotic string on the blow-up of one of the T⁶/Z₃ singularities vs heterotic string on T⁶/Z₃.

What's a (toroidal) orbifold? A two dimensional example: T^2/Z_2

• Define T² as "a piece of complex plane" with parameter z.

Orbifolds

Geometry

- Gauge symmetry breaking Constraints and Classification
- Smooth manifold
- The guiding principle Constraints: almost a classification Gauge symmetry breaking
- Matching the approaches A formal example An explicit example
- Conclusions and Outlook

• Define the Z_2 orbifold action on $z: z \rightarrow -z$ and identify the torus under such an action.

The general case: T^6/Z_N

Introductio Motivations Outline

Orbifolds

Geometry

Gauge symmetry breaking Constraints and Classification

Smooth manifold

- The guiding principle Constraints: almost a classification Gauge symmetry breaking
- Matching the approaches A formal example An explicit example
- Conclusions and Outlook

• Define T^6 as three copies of the previous T^2 , with parameters z_i .

• Define the Z_N orbifold action on z_i :

$$z \rightarrow e^{2\pi i \frac{v_i}{N} z_i}$$

イロン 不良 とくほう イロン しほ

Sac

and identify T^6 under such an action.

 \Rightarrow All the informations in the vector $v = (v_1, v_2, v_3)$.

The orbifold operator acts in the gauge bundle too! The SO(32) case.

• The gauge embedding ...

- Let T be a generator of SO(32).
- The orbifold action on it is,

$$T \to \gamma_{Z_N} T \gamma_{Z_N}^{-1}.$$

- Define H_l as the 16 elements of the Cartan subalgebra, and let the other generator be E_{ω} , such that $[H_l, E_{\omega}] = \omega_l E_{\omega}$.
- Since Z_N is abelian, $\gamma_{Z_N} = e^{2\pi i \frac{V}{N} H_1}$. \Rightarrow All the informations in the vector $V^I = (V^1, \dots, V^{16})$.

• ... determines the gauge symmetry breaking!

• Under the orbifold action:

$$H_{l} \rightarrow H_{l}, \quad E_{\omega} \rightarrow E_{\omega} e^{2\pi i \frac{V^{l} \omega_{l}}{N}}$$

⇒ Rank preserving gauge symmetry breaking: All the H_l are "kept", the E_ω with non trivial phase are projected away.

Introduction Motivations

Outline

Orbifolds

Geometry

Gauge symmetry breaking

Constraints and Classification

Smooth

Manifolas The auidina pri

Constraints: almost a classification Gauge symmetry

Matching the approaches A formal example An explicit example

Consistency conditions in a Z_N orbifold

• Z_N orbifold action:

$$\begin{split} z_i &\to e^{2\pi i \frac{V_i}{N}} z_i \quad \Rightarrow \quad V_i = \text{integer } \forall i \\ T &\to \gamma_{Z_N} T \gamma_{Z_N}^{-1} \quad \Rightarrow \quad V^l = \text{integer } \forall l \\ \text{or } \quad V^l = \text{half} - \text{integer } \forall l \end{split}$$

• SUSY:

$$\sum_{i=1}^{3} v_i = even.$$

2

Modular invariance of the string partition function:

$$\frac{1}{N}\left(\sum v_i^2 - \sum {V'}^2\right) = even$$

Dixon, Harvey, Vafa, Witten, NPB 261 (1985)

Ibanez, Nilles, Quevedo, ... `86 - `90

Kobayashi, Raby, Zhang, '04; Hebecker, M.T., '04; Buchmüller, Hamaguchi, Lebedev, Ratz, '04; Förste, Nilles, Vaudrevange, Wingerter, '04.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Introduction Motivations

Orbifolds

Geometry Gauge symmetry breaking

Constraints and Classification

Smooth manifold

The guiding principle Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Consistent T^6/Z_3 models

Introducti Motivations

Orbifolds

Geometry Gauge symmetry breaking

Constraints and Classification

Smooth

The guiding principle Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Conclusions and Outlook In the Z₃ case only the following V¹'s (up to equivalence) fulfil the requirements, with the given gauge symmetry breaking

Giedt, hep-th/0301232; Choi, Groot Nibbelink, M.T., hep-th/0410232.

(0 ¹⁶)	<i>SO</i> (32)	(0 ¹³ , 1 ² , 2)	<i>SO</i> (26) × <i>U</i> (3)
(0 ¹⁰ , 1 ⁴ , 2 ²)	<i>SO</i> (20) × <i>U</i> (6)	(0 ⁷ , 1 ⁶ , 2 ³)	$SO(14) \times U(9)$
(0 ⁴ , 1 ⁸ , 2 ⁴)	<i>SO</i> (8) × <i>U</i> (12)	(0 ¹ , 1 ¹⁰ , 2 ⁵)	<i>SO</i> (2) × <i>U</i> (15)

- This means that the local structure of each singularity is completely determined by one out of 6 possible V¹.
- Nevertheless, we can have different gauge embeddings V¹ in each of the 27 T⁶/Z₃ singularities, that are all equivalent from a purely geometrical perspective (Discrete Wilson lines).

Smooth manifolds with fluxes: guiding principle

 Given the low-energy spectrum and lagrangian of Heterotic string on 10d space

$$S \sim \int_{\mathbb{M}^{10}} d_{X}^{10} \sqrt{g_{10}} e^{-2\phi} \left[R + (\partial \phi)^{2} - |H_{3}|^{2} - F^{2}
ight] = \int_{\mathbb{M}^{10}} d_{X}^{10} \sqrt{g_{10}} \mathcal{L}_{10},$$

2 we can choose a suitable smooth internal space K^6 and define a 4d lagrangian and spectrum via the Kaluza-Klein reduction:

$$S = \int_{\mathbb{M}^4 \times K^6} d^{4} y \sqrt{g_4 g_6} \mathcal{L}_{10} = \int_{\mathbb{M}^4} d^{4} x \sqrt{g_4} \mathcal{L}_4.$$

Also the internal components of *F* and *H* can be taken to be non-trivial, but let us reduce to the $\langle H \rangle = 0$ case.

- 3 The chiral spectrum can be computed by checking the reduction of the 10d anomaly polynomial, i.e. via the Dirac index.
- ! The approach is valid only if the low energy 10d SUGRA description of string theory is valid, i.e. if the "typical" lengths of the internal space are much larger than α' .

Introduction Motivations

Orbifolds

Geometry Gauge symmetry breaking Constraints and Classification

Smooth manifold

The guiding principle

Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Which manifolds? Which fluxes? Constraints.

SUSY and Background e.o.m:

- I K^6 must be Ricci flat.
- II The F-flux must satisfy the Yang-Mills field equations.III The e.o.m. and Bianchi Identity for H must be satisfied

$$H = dB - \frac{\alpha'}{4} (\omega_3^{\gamma_M} - \omega_3^G) \quad \Rightarrow \quad dH = \frac{\alpha'}{4} (F \wedge F - R \wedge R)$$
$$\Rightarrow \quad \int_{\gamma_4} (F \wedge F - R \wedge R) = \int_{\gamma_4} dH = 0.$$

• The *F*-flux must be quantized.

Smooth space compactifications:

Fradkin, Tseytlin PLB 158 (1985); Candelas, Horowitz, Strominger, Witten, NPB 258 (1985) Strominger, NPB 274 (1986); Abouelsaood, Callan, Nappi, Yost, NPB 280 (1987).

Flux & SUSY breaking (open string orbifolds): Bachas, hep-th/9503030; Bianchi, Stanev, hep-th/9711069; Angelantonj, Antoniadis, Dudas, Sagnotti, hep-th/0007090; Larosa, Pradisi, hep-th/0305224

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Sac

Flux & realistic Heterotic models: Donagi, Lukas, Ovrut, Waldram, hep-th/9811168; Andreas, Curio, Klemm, hep-th/9903052; Bouchard, Donagi, hep-th/0512149.

U(1) fluxes on smooth backgrounds: Blumehagen, Honecker '05

Introduction Motivations

Outline

Orbifolds

Geometry

Gauge symmetry breaking

Constraints an

Smooth

manifolas

The guiding principle

Constraints: almost a classification

Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Gauge symmetry breaking

Introduction Motivations Outline

Orbifolds

Geometry Gauge symmetry breaking Constraints and Classification

Smooth manifold

The guiding principle Constraints: almost a classification

Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Conclusions and Outlook

- Consider a complex two form *F* defined in the internal space, quantized and satisfying the Yang-Mills equations: it is a good U(1) flux.
- Such a flux can be embedded in the *SO*(32) gauge group in many different ways

 $F = \bar{V}^I H^I \mathcal{F}$

• The gauge group is broken, due to such a flux, to the subgroup of *SO*(32) that commutes with *F*, i.e.

all the H_l ; the E_ω such that $\left[E_\omega, \bar{V}^l H^l\right] = 0$

Similar to the unbroken gauge group in the orbifold case.

A formal example: the K3 models with flux as realization of T^4/Z_2 orbifold models

Honecker, M.T., hep-th/0612030

Introduction Motivations

- Orbifolds
- Geometry Gauge symmetry breaking Constraints and Classification
- Smooth
- The guiding principle Constraints: almost a classification Gauge symmetry breaking
- Matching the approaches A formal example An explicit example
- Conclusions and Outlook

- Given K3 we know that there are 20 (1, 1)-cycles.
- T^4/Z_2 is an orbifold limit of K3, in the orbifold perspective 4 of the 20 cycles are living on the original T^4 (untwisted), the other 16 are localized each in one of the 16 orbifold singularities (twisted).

The effect of V in the orbifold is seen in the smooth case as a gauge flux \mathcal{F} wrapped on the "localized" cycle.

Introduction Motivations Outline

Orbifolds

Geometry Gauge symmetry breaking Constraints and Classification

Smooth manifold

- The guiding principle Constraints: almost a classification Gauge symmetry breaking
- Matching the approaches
- A formal example An explicit example

- We want to "mimic" a T^4/Z_2 orbifold model by using fluxes on K3
- ⇒ Wrap a flux $F = \overline{V}^I H^I \mathcal{F}$ on each of the 16 "twisted" cycles, and nothing on the "untwisted" ones.
 - For simplicity we want to avoid the issue of discrete Wilson lines
- ⇒ Wrap the same flux on each of the 16 "twisted" cycles.
- From the integrated Bianchi Identity we get the condition $\bar{V}^2 = 6$, that allows us to reconstruct all (and only) the known T^4/Z_2 models.

Matching the classifications: T^4/Z_2 orbifold models vs fluxed K3 models

Orbifold models: $V^2 = 2 \mod 4$	K3 models: $\bar{V}^2 = 6$
$(1^2,0^{14}) \Rightarrow SO(28) \times SU(2) \times SU(2)$	$(1^2,2,0^{13}) \Rightarrow SO(26) \times U(1) \times U(2)$
(28, 2, 2) + 4(1, 1, 1) + 8(28, 1, 2) + 32(1, 2, 1)	2(26, 2) + 14(26, 1) + 36(1, 2) + 34(1, 1)
$(1^6,0^{10}) \Rightarrow SO(20) \times SO(12)$	$(1^6,0^{10}) \Rightarrow SO(20) \times U(6)$
$(20, 12) + 4(1, 1) + 8(1, 32_+)$	2(20, 6) + 14(1, 15) + 20(1, 1)
$\frac{1}{2}(1^{15},-3) \Rightarrow U(16)$	$\frac{1}{2}(1^{15},-3) \Rightarrow U(15) \times U(1)$
2(120) + 4(1) + 16(16)	2(105) + 20(1) + 16(15)

<ロ> (四) (四) (三) (三) (三)

An explicit example: blow-up of the T^6/Z_3 singularities

Groot Nibbelink, M.T., Walter, hep-th/0701227

- Introduction Motivations Outline
- Orbifolds
- Geometry Gauge symmetry breaking Constraints and Classification
- Smooth manifold
- The guiding principle Constraints: almost a classification Gauge symmetry breaking
- Matching the approaches A formal example An explicit example
- Conclusions and Outlook

- Take the original orbifold, "cut apart" one of the singularities, blow it up:
- \Rightarrow Get a smooth (non-compact) space
- \Rightarrow Use it as internal K^6 space in the compactification with gauge fluxes

 The whole smooth manifold will be given by patching the blow-up singularities. Introduction Motivations Outline

Orbifolds

Geometry Gauge symmetry breaking

Constraints and Classification

Smooth

The guiding principle Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Conclusions and Outlook

- In the T^6/Z_3 case there are 27 equivalent singularities.
- We can cut one of them and consider its blow-up M³, obtaining the explicit form of metric g, curvature R, sechsbein etc.
- Cross-check: the Euler number

$$\chi(T^6/Z_3) = 27\chi(\mathcal{M}^3) = \frac{1}{3}\int_{\mathcal{M}^3} \operatorname{tr}\left(\frac{\mathcal{R}}{2\pi i}\right)^3 = -72$$

- Finally we can explicitly define a U(1) bundle \mathcal{F} on the space, and embed it into the SO(32) gauge group as in the previous case $F = V'H'\mathcal{F}$.
- The H Bianchi identity fixes the maximum amount of flux, and we get $\bar{V}^2 = 12$.
- From V' we can compute the unbroken gauge group (commutant with V'H'), and thus, from the explicit form of \mathcal{R} and \mathcal{F} , the chiral spectrum through the reduction of the 10d anomaly polynomial (Dirac index).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- (日) (四) (三) (三)

Mc	atc	hing 1	he cl	assifi	catior	าร:		
T ⁶ /	Z_3	orbif	old vs	its b	low-u	p smoo	oth sp	bace

Orbifold models: $V^2 = 0 \mod 6$	Blow up models: $\bar{V}^2 = 12$
$(0^{16}) \Rightarrow SO(32)$	no match
$(0^{13}, 1^2, 2) \Rightarrow SO(26) \times U(3)$	$(0^{12}, 3, 1^3) \Rightarrow SO(24) \times U(1) \times U(3)$ $(0^{13}, 2^3) \Rightarrow SO(26) \times U(3)$
$(0^{10}, 1^4, 2^2) \Rightarrow SO(20) \times U(6)$	$(0^{10}, 1^4, 2^2) \Rightarrow SO(20) \times U(4) \times U(2)$
$(0^7, 1^6, 2^3) \Rightarrow SO(14) \times U(9)$	$(0^7, 1^8, 2) \Rightarrow SO(14) \times U(8) \times U(1)$
$(0^4, 1^8, 2^4) \Rightarrow SO(8) \times U(12)$	$(0^4, 1^{12}) \Rightarrow SO(8) \times U(12)$ $\frac{1}{2}(3^4, 1^{12}) \Rightarrow U(4) \times U(12)$
$(0,1^{10},2^5) \Rightarrow U(1) \times U(15)$	$\frac{1}{2}(1^{14},3,-5) \Rightarrow U(14) \times U(1)^2$

Fineprints & caveats: details of a case

Introductio Motivations Outline

Orbifolds

Geometry Gauge symmetry breaking Constraints and Classification

Smooth manifold

The guiding principle Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Conclusions and Outlook

Orb.	<i>SO</i> (26) × <i>U</i> (3)	$3(26, \overline{3})_{-1} + 3(1, \overline{3})_2 + 27 \{3(1, 3)_0 + (1, 1)_2 + (26, 1)_{-1}\}$
Sm. I	<i>SO</i> (26) × <i>U</i> (3)	$3(26, \overline{3})_{-1} + 26 \times 3(1, 3)_{-2}$
Sm. II	$SO(24) \times U(3) \times U(1)$	$3(24, \overline{3})_{-1} + 6(1, \overline{3})_2$ $26 \times 3(1, 3)_4 + + (24, 1)_3$

- First smooth model: matching at the chiral spectrum level, vev for the singlet twisted field.
- Second smooth model: matching at the chiral spectrum level, vev for the (26, 1) twisted field.
- No match for the U(1) gauge charges! (But they are anyway either Higgs-broken or anomalous – that's the same ...)

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Sar

Conclusions and Outlook

Introductic Motivations Outline

Orbifolds

Geometry Gauge symmetry breaking Constraints and Classification

Smooth manifold

The guiding principle Constraints: almost a classification Gauge symmetry breaking

Matching the approaches A formal example An explicit example

Conclusions and Outlook The matching between orbifold models and smooth models with U(1) flux has been shown (in some simple case).

• The analysis was performed

- on a "semi-explicit" way, by using the topological properties of the smooth space only (valid and checked in the $K3 T^4/Z_n$ case).
- in an explicit way, by studying the blow-up of orbifold singularities (valid and checked in the T²ⁿ/Z_n case.)
- \Rightarrow Extension to other geometries?
- ⇒ Beyond the matching: moduli stabilization in orbifold model building through the "smooth approach".