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Motivations I:
The String Phenomenology “Paradigm”

Low energy (Heterotic) string theory
⇒ d = 10, N = 1 SUGRA, SO(32) SYM.

Necessary a compactification on an
“internal space” M10 → M4 × K 6,

⇒ such that SUSY is reduced to d = 4 N = 1,
⇒ and the gauge symmetry is also reduced.

More in general, we have to select a background
for all the fields that are scalars of the 4d
Minkowski group (internal components of gauge
bosons, 2-forms, etc.):

AM −→ (Aµ, Ai) ⇒ 〈Ai〉 6= 0.

⇒ Flux compactification:
for us now mainly gauge fluxes.
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Motivations II: Which background?

Toroidal orbifold ⇒ Exact string quantization.
⇒ Complete control on the

spectrum of the model.
⇒ Bad control of the (twisted

field) lagrangian.
⇒ No control on the potential of

the scalar fields.

K  =  T  / Z66

N

Smooth manifold ⇒ No string quantization.
⇒ Only chiral spectrum known.
⇒ “Controlled” stabilization of

scalars through (closed string)
fluxes.
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Reconciliating the two approaches

Each model built via an orbifold compactification of
heterotic string has a counterpart, built via a
compactification on a smooth manifold (in the
presence of U(1) gauge fluxes).

Outline

I Review of heterotic string orbifolds.
II String models on smooth spaces with U(1) fluxes.

III Merging the approaches:
Formal matching: the T 4/Z2 models vs K3 models.
An explicit example: Heterotic string on the
blow-up of one of the T 6/Z3 singularities vs
heterotic string on T 6/Z3.
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What’s a (toroidal) orbifold?
A two dimensional example: T 2/Z2

Define T 2 as “a piece of complex plane” with
parameter z.

z   z + n + i m

x
~
~

~z = x + i y

y

x   x + n
y   y + m

Define the Z2 orbifold action on z: z → −z and
identify the torus under such an action.
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The general case: T 6/ZN

Define T 6 as three copies of the previous T 2, with
parameters zi .

Im[ z  ]3

Re[ z  ]3

Im[ z  ] Im[ z  ]1 2

Re[ z  ]2Re[ z  ]1

Define the ZN orbifold action on zi :

z → e2πi
vi
N zi

and identify T 6 under such an action.
⇒ All the informations in the vector v = (v1, v2, v3).
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The orbifold operator acts in the gauge
bundle too! The SO(32) case.

The gauge embedding . . .
Let T be a generator of SO(32).
The orbifold action on it is,

T → γZN Tγ−1
ZN

.

Define HI as the 16 elements of the Cartan
subalgebra, and let the other generator be Eω,
such that [HI , Eω] = ωIEω.

Since ZN is abelian, γZN = e2πi VI
N HI .

⇒ All the informations in the vector V I = (V 1, . . . , V 16).
. . . determines the gauge symmetry breaking!

Under the orbifold action:

HI → HI , Eω → Eωe2πi
VI ωI

N .

⇒ Rank preserving gauge symmetry breaking:
All the HI are “kept”, the Eω with non trivial phase
are projected away.



Introduction
Motivations

Outline

Orbifolds
Geometry

Gauge symmetry
breaking

Constraints and
Classification

Smooth
manifolds
The guiding principle

Constraints: almost a
classification

Gauge symmetry
breaking

Matching the
approaches
A formal example

An explicit example

Conclusions
and Outlook

Consistency conditions in a ZN orbifold

ZN orbifold action:

zi → e2πi
vi
N zi ⇒ vi = integer ∀ i

T → γZN Tγ−1
ZN

⇒ V I = integer ∀I

or V I = half − integer ∀I.

SUSY:
3X

i=1

vi = even.

Modular invariance of the string partition function:

1
N

“X
v2

i −
X

V I 2
”

= even

Dixon, Harvey, Vafa, Witten, NPB 261 (1985)

Ibanez, Nilles, Quevedo, . . . ‘86 - ‘90

Kobayashi, Raby, Zhang, ‘04; Hebecker, M.T., ‘04;
Buchmüller, Hamaguchi, Lebedev, Ratz, ‘04;
Förste, Nilles, Vaudrevange, Wingerter, ‘04.
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Consistent T 6/Z3 models

In the Z3 case only the following V I’s (up to equivalence) fulfil
the requirements, with the given gauge symmetry breaking

Giedt, hep-th/0301232; Choi, Groot Nibbelink, M.T., hep-th/0410232.

(016) SO(32) (013, 12, 2) SO(26)× U(3)

(010, 14, 22) SO(20)× U(6) (07, 16, 23) SO(14)× U(9)

(04, 18, 24) SO(8)× U(12) (01, 110, 25) SO(2)× U(15)

This means that the local structure of each singularity is
completely determined by one out of 6 possible V I .

Nevertheless, we can have different gauge embeddings V I

in each of the 27 T 6/Z3 singularities, that are all equivalent
from a purely geometrical perspective (Discrete Wilson lines).
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Smooth manifolds with fluxes:
guiding principle

1 Given the low-energy spectrum and lagrangian of Heterotic
string on 10d space

S ∼
Z

M10
d10x

√
g10 e−2φ

h
R + (∂φ)2− |H3|2− F2

i
=

Z
M10
d10x

√
g10 L10,

2 we can choose a suitable smooth internal space K 6 and
define a 4d lagrangian and spectrum via the Kaluza-Klein
reduction:

S =

Z
M4×K 6
d4x d6y

√
g4 g6 L10 =

Z
M4
d4x

√
g4 L4.

Also the internal components of F and H can be taken to be
non-trivial, but let us reduce to the 〈H〉 = 0 case.

3 The chiral spectrum can be computed by checking the
reduction of the 10d anomaly polynomial, i.e. via the Dirac
index.

! The approach is valid only if the low energy 10d SUGRA
description of string theory is valid, i.e. if the “typical” lengths
of the internal space are much larger than α′.
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Which manifolds? Which fluxes?
Constraints.

SUSY and Background e.o.m:
I K 6 must be Ricci flat.
II The F-flux must satisfy the Yang-Mills field equations.

III The e.o.m. and Bianchi Identity for H must be satisfied

H = dB − α′

4
(ωYM

3 − ωG
3 ) ⇒ dH =

α′

4
(F ∧ F − R ∧ R)

⇒
Z

γ4

(F ∧ F − R ∧ R) =

Z
γ4

dH = 0.

The F-flux must be quantized.

Smooth space compactifications:
Fradkin, Tseytlin PLB 158 (1985); Candelas, Horowitz, Strominger, Witten, NPB 258 (1985)
Strominger, NPB 274 (1986); Abouelsaood, Callan, Nappi, Yost, NPB 280 (1987).

Flux & SUSY breaking (open string orbifolds):
Bachas, hep-th/9503030; Bianchi, Stanev, hep-th/9711069; Angelantonj, Antoniadis, Du-
das, Sagnotti, hep-th/0007090; Larosa, Pradisi, hep-th/0305224

Flux & realistic Heterotic models: Donagi, Lukas, Ovrut, Waldram, hep-th/9811168;
Andreas, Curio, Klemm, hep-th/9903052; Bouchard, Donagi, hep-th/0512149.

U(1) fluxes on smooth backgrounds: Blumehagen, Honecker ‘05
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Gauge symmetry breaking

Consider a complex two form F defined in the
internal space, quantized and satisfying the
Yang-Mills equations:

it is a good U(1) flux.
Such a flux can be embedded in the SO(32)
gauge group in many different ways

F = V̄ IH IF

The gauge group is broken, due to such a flux, to
the subgroup of SO(32) that commutes with F , i.e.

all the HI ; the Eω such that
[
Eω, V̄ IH I

]
= 0

Similar to the unbroken gauge group in the
orbifold case.
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A formal example: the K3 models with flux
as realization of T 4/Z2 orbifold models

Honecker, M.T., hep-th/0612030

Given K3 we know that there are 20 (1, 1)-cycles.
T 4/Z2 is an orbifold limit of K3, in the orbifold perspective 4 of
the 20 cycles are living on the original T 4 (untwisted), the
other 16 are localized each in one of the 16 orbifold
singularities (twisted).

orbifold projection

wrapped flux

The effect of V in the orbifold is seen in the smooth case as a
gauge flux F wrapped on the “localized” cycle.
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We want to “mimic” a T 4/Z2 orbifold model by
using fluxes on K3

⇒ Wrap a flux F = V̄ IH IF on each of the 16 “twisted”
cycles, and nothing on the “untwisted” ones.
For simplicity we want to avoid the issue of
discrete Wilson lines

⇒ Wrap the same flux on each of the 16 “twisted”
cycles.
From the integrated Bianchi Identity we get the
condition V̄ 2 = 6, that allows us to reconstruct all
(and only) the known T 4/Z2 models.



Matching the classifications:
T 4/Z2 orbifold models vs fluxed K3 models

Orbifold models: V 2 = 2 mod 4 K3 models: V̄ 2 = 6

(12, 014) ⇒ SO(28)× SU(2)× SU(2) (12, 2, 013) ⇒ SO(26)× U(1)× U(2)

(28, 2, 2) + 4(1, 1, 1)+
8(28, 1, 2) + 32(1, 2, 1)

2(26, 2) + 14(26, 1)
+36(1, 2) + 34(1, 1)

(16, 010) ⇒ SO(20)× SO(12) (16, 010) ⇒ SO(20)× U(6)

(20, 12) + 4(1, 1) + 8(1, 32+) 2(20, 6) + 14(1, 15) + 20(1, 1)

1
2 (115,−3) ⇒ U(16) 1

2 (115,−3) ⇒ U(15)× U(1)

2(120) + 4(1) + 16(16) 2(105) + 20(1) + 16(15)
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An explicit example:
blow-up of the T 6/Z3 singularities

Groot Nibbelink, M.T., Walter, hep-th/0701227

Take the original orbifold, “cut apart” one of the
singularities, blow it up:

⇒ Get a smooth (non-compact) space
⇒ Use it as internal K 6 space in the compactification

with gauge fluxes

The whole smooth manifold will be given by
patching the blow-up singularities.
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In the T 6/Z3 case there are 27 equivalent singularities.

We can cut one of them and consider its blow-up M3,
obtaining the explicit form of metric g, curvature R,
sechsbein etc.

Cross-check: the Euler number

χ(T 6/Z3) = 27χ(M3) =
1
3

Z
M3

tr
„
R

2πi

«3

= −72

Finally we can explicitly define a U(1) bundle F on the
space, and embed it into the SO(32) gauge group as in the
previous case F = V IH IF .

The H Bianchi identity fixes the maximum amount of flux, and
we get V̄ 2 = 12.

From V I we can compute the unbroken gauge group
(commutant with V IH I), and thus, from the explicit form of R
and F , the chiral spectrum through the reduction of the 10d
anomaly polynomial (Dirac index).



Matching the classifications:
T 6/Z3 orbifold vs its blow-up smooth space

Orbifold models: V 2 = 0 mod 6 Blow up models: V̄ 2 = 12

(016) ⇒ SO(32) no match

(013, 12, 2) ⇒ SO(26)× U(3)
(012, 3, 13) ⇒ SO(24)× U(1)× U(3)

(013, 23) ⇒ SO(26)× U(3)

(010, 14, 22) ⇒ SO(20)× U(6) (010, 14, 22) ⇒ SO(20)× U(4)× U(2)

(07, 16, 23) ⇒ SO(14)× U(9) (07, 18, 2) ⇒ SO(14)× U(8)× U(1)

(04, 18, 24) ⇒ SO(8)× U(12)
(04, 112) ⇒ SO(8)× U(12)

1
2 (34, 112) ⇒ U(4)× U(12)

(0, 110, 25) ⇒ U(1)× U(15) 1
2 (114, 3,−5) ⇒ U(14)× U(1)2
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Fineprints & caveats: details of a case

Orb. SO(26)× U(3)
3(26, 3)−1 + 3(1, 3)2+

27 {3(1, 3)0 + (1, 1)2 + (26, 1)−1}

Sm. I SO(26)× U(3) 3(26, 3)−1 + 26× 3(1, 3)−2

Sm. II SO(24)× U(3)× U(1)
3(24, 3)−1 + 6(1, 3)2

26× 3(1, 3)4 + +(24, 1)3

First smooth model: matching at the chiral spectrum level,
vev for the singlet twisted field.

Second smooth model: matching at the chiral spectrum
level, vev for the (26, 1) twisted field.

No match for the U(1) gauge charges! (But they are anyway
either Higgs-broken or anomalous – that’s the same . . . )
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Conclusions and Outlook

The matching between orbifold models and
smooth models with U(1) flux has been shown
(in some simple case).
The analysis was performed

on a “semi-explicit” way, by using the topological
properties of the smooth space only
(valid and checked in the K3 – T 4/Zn case).
in an explicit way, by studying the blow-up of
orbifold singularities
(valid and checked in the T 2n/Zn case.)

⇒ Extension to other geometries?
⇒ Beyond the matching: moduli stabilization in

orbifold model building through the “smooth
approach”.
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