Acausal Theories of Quantum Matter Coupled with Classical Gravity

hep-th/0611131

March 20, 2007 Università di <u>Pisa</u>

Introduction

- Gravity: To quantize or not to quantize?
 - There are arguments that suggest gravity must be a quantum theory, but they are not conclusive.
 - There no experimental data showing a quatum behavior.
 - Quantize the Gravitational Field?[Callender& Hugget(2001)]
- Quantum gravity as QFT is not renormalizable.
 - WE do not know how to renormalize it.
 - Study alternatives to QFT
 - Consider coupling classical gravity with quantum field
- ► Although the ultimate theory of gravity was a quantum one, it still has sense to study quantum matter in a classical background as its results could generalize.

- ► If we left gravity as classical,
 - Pure gravitational terms: by power counting and diffeomorphism invariance, only 3 counterterms can arise:
 - ► In 4 dimension only two remains due Gauss-Bonnet Rentite Range Range
 - Matter: Same terms.
- ► As usual we can add required terms with independent constats to renormalize
- ► But it means to have a Higher derivative theory (In the gravitational sector)

Higher Derivative

- Problems at quantum and classical levels.
- Quantzm: Stelle (1976)

 a

 d4x | g R + aR² + bR₁ o R¹ o + S_m
 - In a appropriate gauge, the gravitational propagator goes as
 - Improve the power counting.
 - Even in presence of matter, it is renormalizable.
 - But is unsatisfactory as physical theory as it propagate ghosts. It is not Unitary.
- Classically:
 - Instabilities: Runaway solutions
- Higher Derivative theories share this problems; not good classically (instabilities) neither as quantum theories (unitarity).

Coupling Matter to Gravity

- We do not want a HD theory. R₁, R¹, R²?
- What can we do with the divergences
- Instead include them as counterterms, transform them away by a field redefinition.

- ► Note:
 - Also the matter sector will be modified: new vertices appear. It's a different theory g_{m}^{0}
- ► The idea is to implement a MAP that connect the renormalization of two different theories.

Map

Renormalization

 $g_{\rm B}$

Obs: g es renormalizado aunque es clasico!

Map perturbativo

- ► The redefinition of the metric can be written explicitly in a perturbative way. (Anselmi, hep-th/0605205)
- ► It uses this general property

$$g_{1}^{0} = g_{1} + aR_{1} \cdot i \frac{a + 2b}{2} g_{1} \cdot R + \frac{3a^{2}}{4} R_{1} \cdot i \frac{3a(a + 2b)}{4} r_{1} r_{2} R_{1} \cdot R_{1} \cdot abRR_{1} \cdot + \frac{1}{2} a^{2} R_{1} R_{2} \cdot R_{2} \cdot R_{1} \cdot R_{2} \cdot a^{2} R_{1} \cdot R_{2} \cdot A_{2} \cdot R_{2} \cdot A_{2} \cdot R_{2} \cdot A_{2} \cdot A$$

Note this is a series in derivatives of g

Causality Violations

▶ Where it comes from? Example:

$$L(';J) = \frac{1}{2}(@')(@') + \frac{1}{2}\mathbb{R}^{2}(\pi')^{2} + 'J$$

$$= L(')(',J) = (@',0)(@',0) + '0 p 1$$

$$= L(',J) = (@',0)(@',0) + '0 p 1$$

$$Z = \int d^4x \, C(x \mid x^0) J(x^0)$$

$$C(x \mid x^0)$$

- Is the green function that makes to integrate the source over points x' outside the past of x
- That means, for example, that we need to know the source in the future to determinate the interaction in the present
- Outside a radius of order the green function is vanishing or rapidly oscillating.
- The resummation of the series in derivatives is therefore the responsible of the causality violations at high energy.

Causality Violations

- ➤ The theories obtained from a map of this kind present causality problems of order of its parameters (a,b)
- ➤ The main feature that allows us demostrate the renormalizability of a AC theory from the HD is that the map depends only on g, which is classical

- ► In summary, we have
 - A map that relate the renormalization of two inequivalent theories.
 - ►One is higher derivate, has instabilities.
 - ►The other has causality violations at high energy.
 - The scale of the violation is given by the parameters (a,b).
 - The AC theory has new vertices coupling matter and gravity.

After the map we are left with a theory that is acausal and has the form

$$S_{AC} = \begin{cases} 1 & Z \\ \frac{1}{2 \cdot 2} & d^{4}x^{p} \neq S_{m}(';g;) + p \leq S_{m}(';g;) \\ \frac{1}{2 \cdot 2} & \frac{1}{2} & \frac{1}{2} + \frac{$$

- ► These theories have a term (the head of the deformation) that is proportional to the stress-tensor and the Ricci tensor.
- ► Now we will use the map to prove the renormalization of more general theories.

First generalization

$$S_{AC} = \frac{1}{2 \cdot 2} Z_{d4x}^{p} = gR + S_{m}(';g;) + \phi S_{m}(';g;)$$

•Matter operators of dimensionalities less than or equal to 4
•Coupled to arbitrary functions of th metric (with the symmetries)
$$\phi S_{m}(';g;,0) = \int_{0}^{\infty} S_{m} = \int_{0}^$$

Using the map is possible demostrate the renormalizability of this theory.

First generalization

$$S_{HD} = \begin{cases} 1 & Z \\ \frac{1}{2 \cdot 2} & d^4x \end{cases} \text{ if } gR + \begin{cases} Z & \text{Differential operator, can depend on R and the Dimensional full constants} \\ + S_m (';g;)) + \phi S_m (';g;;) \end{cases}$$

Same restictions as before

- Analyzing generically all possible Feynman diagrams, inductively in loop expansion, one find that
 - Pure gravitational counterterms are squarly proportional to Ricci
 - The same form of matter term already present.
- This theory is renormalizable. The divergences can be eliminated order by order by redefinition of couplings and fields.
- Considering that in the map, the variation of g is proportional to Ricci, one demonstrates that this theory and the previous are connected by a map.

Second generalization

All kinetic terms are proportional to Ricci^2 (Always possible, using Bianchi identities and integration by parts) $R_{\rm R}$ - $_{\circ}$ $_{\pm}$ r , $\phi \phi r$ 2 $R_{1/3/4}$ $_{\circ}$

$$S_{HD} = d^{4}x^{p} : g \xrightarrow{R} + V(g) + R_{1} \cdot T^{1} \cdot V(g) + R_{1}$$

Matter operator with dimensionality less than or equal to 4

Tensorial functions of the metric

- Renormalizable. No matter operator of dimension greater than for can be generated. Gravitational sector is the most general.
- Using the map, an acausal can be derived.
- Some consistent reduction of couplings can be applied.

Example 1:Acausal Einstein-Yang-Mills

$$\frac{L_{\text{EpyM-HD}}}{1} = \frac{1}{2 \cdot 2} \, \text{R} + aR^2 + bR_{10} \, R^{10} \, \text{i} \, \frac{1}{4 \text{R}} F_{10}^{a} F^{a10}$$

Applying the map:
$$L_{\text{pyM-AC}} = 1 \\
\frac{1}{2 \cdot 2} R_{\text{i}} = \frac{1}{4^{\text{R}}} F_{\text{i}}^{\text{a}} F^{\text{a}}^{\text{i}} \cap H(g) + T_{\text{i}} \cdot K^{\text{i}} \cap (g) + \dots$$

With the matter operators

$$T_{1 \circ 1} = i F_{1 \circ 1}^{a} F_{0}^{a} + i f_{0}^{a} G_{0} + i f_$$

And these functions are determined by the map
$$H(g) = 1 + a^2R_{\mathbb{R}}^{-}R^{\mathbb{R}}_{i}$$
; a^2R^2 ; a^2R^2 ; a^2R^2 ; a^2R^2 ;

$$H(g) = 1 + {}_{6}a^{2}R_{B}^{-}R^{B}_{i} |_{24}a^{2}R^{2};$$
 $L^{10}\% = a^{2}R^{1}\% + a^{2}R^{10}\% = a^{2}R^{10}\% + a^{2}R^{10}\% = a^{2}R^{10}\% - R_{B}^{-}i$
 $Sa(a + 2b)$
 S

Si las dejamos arbitrarias tenemos un ejemplo de esta generalizacion

Consistent reduction of couplings

One way of restrict terms: Take a powercounting renormalizable theory in curved space and let the couplings depend on R.

$$\frac{L_{\text{F}}^{\text{M-HD}}}{\text{ig}} = \frac{R}{2 \cdot 2} + W^{2} + G_{B} ; \frac{1}{4R} F_{10}^{a} F^{a10}$$

$$W^{2} = R_{1 \circ 1/2/4} R^{1 \circ 1/2/4} i \frac{4}{n_{i} \cdot 2} R_{1 \circ} R^{1 \circ} + \frac{2}{(n_{i} \cdot 1)(n_{i} \cdot 2)} R^{2}$$

$$G_{B} = R_{1 \circ 1/2/4} R^{1 \circ 1/2/4} i 4R_{1 \circ} R^{1 \circ} + R^{2}$$

Introduce an interaction: $f_0 R F_{10} F a^{10}$

Equivalent to

$$\frac{L_{\text{F}}Y^{\text{M-HD}}}{\text{ig}} = \frac{R}{2\cdot 2} + (\text{w} + \text{°R})W^{2} + (\text{3} + \text{1/R})G_{\text{B}} + \frac{\text{7} + \text{3/R}}{(\text{n}; 1)^{2}}R^{2} + \frac{\text{2}}{\text{n}; 1}R^{\alpha}R^{\alpha}R^{\alpha}$$

$$\text{i} \quad \frac{1}{4^{\alpha}}\text{i} \quad f_{0} R \quad F_{1^{\alpha}}^{a}F^{a^{1}}$$

- Using the renormalization of F², in YM we obtain the terms of pure gravity that must be added.
- The renormalization of this parameters is connected. All order expresions can be obtained.

$$\frac{L_{\text{EpYM-HD}}}{i \cdot g} = \frac{R}{2^{\cdot 2}} + (*) + {}^{\circ}R) W^{2} + ({}^{3} + {}^{1}\!R) G_{B} + (*) + {}^{3}\!R R^{2} + (*) + {}^{3}\!R R^{$$

Using the Batalin-Vilkovisky formalism, we see that the divergences, order by order, have the form of $f(R)FaFa^{10}$

- Or pure gravity squarly proportional to Ricci tensor,
- Or sigma-exact, eliminted by a canonical transformation of the fields, of the form $A_1 \; ! \; L_\Delta(R)A_1$

Z
$$d^{n}x^{p}$$
; g^{1} $d^{n}x^{p}$; g^{1

- Now this theory is closed under renormalization, but HD.
- Is a particular case of couplings depending on the curvature scalar.
- Again, using the map we can generate from this an acausal theory
- The head (dimensionality 6) of the deformtion will be:

$$\phi S(HEAD) = d^{4}x^{p}; g; f_{4}F_{10}^{a}F^{a1} R; a_{2}R_{10}T^{10}$$

Conclusions

- In a wide class of theories, divergences are removed without introducing HD terms in the gravitational sector.
- No direct extension of the map to quantum gravity.
- In QG the resummation of infinite series of fields and derivatives (generated by renormalization) could similarly lead to causality violations at high energy.