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1. Introduction

• Superstrings and M-theory compactifi-
cations can give 4d vacua with exact or
spontaneously broken supersymmetries.

• The most interesting phenomenologically
are those where

N = 8, 4 → N = 1 → N = 0

• The underlying D = 10 theories encode
N ≥ 4 constrained structure which can be
used to obtain useful information on the
effective N = 1 supergravity.

• The 4d N = 1 theories, typically include
moduli fields whose vacuum expectation
values are undetermined.

Some of these moduli come from the :
dilaton field Φ, internal metric GIJ , and
p-form fields F p.



Generating a potential for the moduli is
essential in order

(i) to reduce the number of massless scalars

(ii) to induce supersymmetry breaking

(iii) to determine the space-time back-
ground geometry

In N ≥ 4 supergravities, the only known
available tool for generating a potential is
the “gauging” which is induced by:

i) Non trivial Fluxes and Branes

ii) Non-perturbative corrections

iii) Perturbative Radiative Corrections

iv) Thermal Corrections



2. N = 4 Gauging ↔ N = 1 Superpotential

“Gauging” −→ We introduce in
the theory a gauge group G acting on the
vector fields in the gravitational and/or
vector super-multiplets.

The important fact is: The kinetic terms
of the fields in the gauged theory, remain
the same as in the ungauged theory.

When translated into the language of the
“daughter N = 1” obtained from the
“mother N ≥ 4” by a consistent orbifold
(CY) truncation, the gauging gives non-
trivial modifications to the structure of
the superpotential W, whereas the Kähler
potential K remains the same.

To be more precise consider the case of
N = 4 theory constructed either on:



• Heterotic on T 6

• Type IIA or IIB on K3× T 2

• Type IIA, IIB on orientifolds

• . . .

Independently of our starting point, the
N = 4 scalar manifold is identical for all
cases.

M =



SU(1, 1)

U(1)



S
×




SO(6, 6 + n)

SO(6)× SO(6 + n)



TA,UA,ZI

After Z2 × Z2 orbifold (CY) projections

N = 4 → N = 1 and M → K



K =



SU(1, 1)

U(1)



S
×




SO(2, 2 + n1)

SO(2)× SO(2 + n1)



T1,U1,Z

I
1

×




SO(2, 2 + n2)

SO(2)× SO(2 + n2)


 ×




SO(2, 2 + n3)

SO(2)× SO(2 + n3)




K = − log
(
S + S̄

)

− log



(
T1 + T̄1)(U1 + Ū1)− (Z1 + Z̄1

)2



− log



(
T2 + T̄2)(U2 + Ū2)− (Z2 + Z̄2

)2



− log



(
T3 + T̄3)(U3 + Ū3)− (Z3 + Z̄3

)2

 .

The above choice of parametrization is a
solution to the N = 4 constraints after
Z2×Z2 orbifold projections N = 4 → N = 1



S-manifold

|φ0|2 − |φ1|2 =
1

2
−→

φ0−φ1 =
1

(S + S̄)1/2
, φ0+φ1 =

S

(S + S̄)1/2

TA, UA, ZI
A-manifolds

|σ1
A|2 + |σ2

A|2 − |ρ1
A|2 − |ρ2

A|2 − |ΦI
A|2 =

1

2
(σ1

A)2 + (σ2
A)2 − (ρ1

A)2 − (ρ2
A)2 − (ΦI

A)2 = 0

σ1
A =

1 + TAUA − (ZI
A)2

2Y
1/2
A

, σ2
A = i

TA + UA

2Y
1/2
A

ρ1
A =

1− TAUA − (ZI
A)2

2Y
1/2
A

, ρ2
A = i

TA − UA

2Y
1/2
A

ΦI
A =

iZI
A

2Y
1/2
A

, KA = −log YA



The superpotential of the N = 1 super-
gravity is determined by the gravitino mass
terms in N = 4 after the Z2 × Z2 orbifold
projections.

eK/2W = (φ0 − φ1) fIJK ΦI
1ΦI

2ΦI
3

+(φ0 + φ1) f̄IJK ΦI
1ΦI

2ΦI
3

ΦI
A =



 σ1

A, σ2
A; ρ1

A, ρ2
A, ΦI

A





fIJK and f̄IJK are the gauge structure
constants of the N = 4 “mother” theory.

In the heterotic, the contributions from
fIJK give rise to a perturbative “electric
gauging”. The contributions from f̄IJK
provide the non-perturbative “magnetic
gauging”.



In general, the breaking of SUSY requires
a gauging with non-zero fIJK involving
the fields

σ1
A, σ2

A; ρ1
A, ρ2

A −→ gauging involving the
N = 4 graviphotons −→ gauging of the R-
symmetry.

In string and M-theory, fIJK and f̄IJK
are generated by non-zero electric and mag-
netic fluxes; RR and fundamental p-form
fields:

• 3-form fluxes H3, in the NS-sector of
heterotic, type IIA and type IIB

• F p, p-form fluxes, in M-theory and in
the RR sector of type IIA and type IIB

• F 2 2-form fluxes, in heterotic (E8×E8 or
SO(32)) as well as in type I



• ω3 spin connection, 3-form geometrical
fluxes, in all strings and M-theory.

Many special cases have been studied in
the literature .

• H3 in heterotic

Derendinger, Ibanez, Nilles, 85, 86;
Dine, Rohm, Seiberg, Witten, 85;

Strominger, 86; Rohm, Witten, 86;
Derendinger, Kounnas, Petropoulos, 06;

. . .
• ω3, H3, F 2, exact string solution via freely
acting orbifold.
Generalization of the Scherk–Schwarz gaug-
ing to superstring theory.

Rohm, 84; Kounnas, Porrati, 88
Ferrara, Kounnas, Porrati, Zwirner, 89

Kounnas, Rostand, 90
Kiritsis, Kounnas, Petropoulos, Rizos, 99



Antoniadis, Dudas, Sagnotti, 99
Antoniadis, Derendinger, Kounnas, 99

Derendinger, Kounnas, Petropoulos,
Zwirner, 04

Derendinger, Kounnas, Petropoulos,
05,06

. . .

• Simultaneous presence of NS, RR H3

and F 3.

Frey, Polchinski, 02
Giddings, Kachru, Polchinski, 02

Kachru, Schulz, Trivedi, 03
Kachru, Schulz, Tripathy, Trivedi, 03
Derendinger, Kounnas, Petropoulos,

Zwirner, 2004
. . .



3. Combined Fluxes, Gauging
and Moduli Stabilization.

• Flat gaugings, no-scale models;
stabilization of the four moduli out of the
seven main moduli.

(i) Scherk–Schwarz, perturbative, ω3-fluxes.

W = a ( T2U1 + T1U2 )

V ≥ 0, flat in S, T3, U3 directions

m2
3/2 =

|a|2
st3u3

(ii) Scherk–Schwarz non-perturbative,
ω3, F 2, H3, F 6 -fluxes in type IIA

W = a( ST1 + T2T3 ) + ib( S + T1T2T3 )

m2
3/2 =

|2a|2 + |2b|2
u1u2u3



(iii) F 3, H3-fluxes in type IIB

W = a( SU1 + U2U3 ) + ib( S + U1U2U3 )

m2
3/2 =

|2a|2 + |2b|2
t1t2t3

The stabilization of UI moduli is a generic
situation in type IIB −→ No-scale models.

The vanishing of the potential in the flat
direction of the TI-moduli can be modi-
fied only by (non-) perturbative and/or
thermal corrections.

(iv) SO(3)× SO(1, 2), Ec
3 × Enc

3 gaugings
ω3, F 2, H3, F 6 -fluxes

W = a( ST1+ST2+ST3 )+a( T1T2+T2T3+T3T1 )

+i3b( S + T1T2T3 )

m2
3/2 =

|6a|2 + |6b|2
u1u2u3



• Non-compact gaugings, SO(1, 2), Enc
3

V > 0 , runaway solutions.

(i) No-modulus stabilization

W = F0

m2
3/2 =

|F0|2
st1t2t3u1u2u3

, V = 4m2
3/2

(ii) Two-moduli stabilization

W = F0 + F2 T1T2,

m2
3/2 =

|2F0|2
st3u1u2u3

, V = 2m2
3/2

(iii) Three-moduli stabilization Enc
3

gauging F0, F2, F4, F6 -fluxes

W = a( 1 + T1T2 + T2T3 + T3T1 )

+ib( T1 + T2 + T3 + T1T2T3 )



m2
3/2 =

|4a|2 + |4b|2
su1u2u3

, V = m2
3/2

• Compact gaugings SU(2), Ec
3

(i) Stabilization of six-moduli,
NS5 brane solution + linear dilaton

W = ω3( T1U1 + T2U2 + T3U3 )− F0

V = −2m2
3/2, m2

3/2 =
|2F0|2

s

(ii) Stabilization of all moduli, AdS4-solution

W = iB[ 2S + 5T1T2T3 + 2(U1 + U2 + U3)

−3(T1 + T2 + T3) ]+

A[ 2S(T1 + T2 + T3)− (T1T2 + T2T3 + T3T1)

+6(T1U1 + T2U2 + T3U3)− 9 ]

S = TA = UA = 1, m2
3/2 =

25|B|2
128

, V = −3m2
3/2



*** Fluxes/Branes ↔ Gaugings***
−→
Explicit Superstring Constructions
with different interesting features:

• Stabilization of four moduli, V ≥ 0:
No-scale models.

• Stabilization of less than four moduli,
V > 0: de Sitter like, runaway solutions
with possible cosmological interest.

• Models based on compact “gaugings”,
V < 0: Domain-Wall Solutions, Five-brane
solutions with non trivial Dilaton or else.

• Models with all seven moduli stabilized
and which admit a supersymmetric AdS4
vacuum.



4. Cosmological-Inflationary Solutions

• I would like to show here, that several
String Effective No-scale Supergravities
admit
de Sitter-like Backgrounds
once the
i) Radiative Corrections,
and
ii) Temperature Corrections
are both included in the
effective potential of the theory.

the cosmological term Λ
and
the curvature term k

a2

will be both generated, in an elegant way,
in the effective no-scale supergravities.



• Due to the presence of non trivial fluxes
the supersymmetry is generally broken.

In the case of no-scale models however,
the potential is semi-positive definite
V ≥ 0
with at least one flat direction Φ in the
scalar field space.

The field Φ is the supersymmetric partner
of the Goldstino and defines the gravitino
mass term m3/2.

m2
3/2 = |W |2eK = e2αΦ, with V ≡ 0.

We are working in unites of the gravita-
tion scale M = 2.4× 1018 GeV .

At the quantum level, the potential gets
corrections because of the supersymmetry
breaking.



The masses of the bosonic and fermionc
degrees of freedom differ by an amount
proportional to m3/2.

What we know about the quantum struc-
ture of the corrected potential ?

1. Assuming an ultraviolet cutoff Λ,
the terms proportional to Λ4 are propor-
tional to the difference of the bosonic and
fermionic degrees of freedom:
nB − nF ≡ 0

2. The term proportional to Λ2 is always
proportional to m2

3/2.

The numerical coefficient depends only on
the geometry of the Kälher potential and
the gauge kinetic function f of the effec-
tive supergravity theory.
At the string level the exact form of this
term is calculable!



Here, for our purpose, it is sufficient to
absorbed this coefficient to the definition
of Λ2

∆V = Λ2 m2
3/2

Λ2 can be positive or negative depending
of the model under consideration.

3. The remaining corrections
scale logarithmically with respect to the
supersymmetry breaking scale, m3/2.

∆V = α(m4
3/2 + Alog

m3/2

µ
)

+ Q2
2 m2

3/2(q2 + log
m3/2

µ
)

+Q4
0(q0 + log

m3/2

µ
) + ...

Where Q2,4 denotes supersymmetric mass
terms and µ the renormalization scale.



The dots denote threshold terms that their
role will be specified later.

• The other corrections we need are those
which are due to the thermal fluctuation
of the fields.

Thus, it is necessary to evaluate the
effective potential at finite temperature T .

The physical scale T naturally sets the
strength of the thermal fluctuations.
Utilizing the appropriate renormalization
group arguments, we must identified the
scale

µ ≡ T .

This identification resumes in an efficient
way the logarithmic corrections.



The threshold corrections are organized
in terms of O(mi

T ) -expansion.
mi are the physical masses defined at the
temperature scale T .
Summarizing, the effective potential
at finite temperature takes the form:

VT = −p(mi, T ) + V (m3/2, Λ, µ = T )

where p(mi, T ) is the pressure density:

p(mi, T ) =
∑

i
pi(mi, T ), ρ(mi, T ) =

∑

i
ρi(mi, T )

T
∂

∂T
pi(mi, T ) = pi(mi, T ) + ρi(mi, T ),

−mi
∂

∂mi
pi(mi, T ) = ρi(mi, T )− 3pi(mi, T )

pi(mi, T ) = T 4 fB,F
p (

mi

T
),

ρi(mi, T ) = T 4 fB,F
ρ (

mi

T
)

ρi(mi, T )− 3pi(mi, T ) = m2
i T 2 ∆B,F (

mi

T
)



5. Gravitational Equations

The energy density equation

3H2 = ρ +
1

2
Φ̇2 + V − 3k

a2

The conservations equation

d

dt


ρ +

1

2
Φ̇2 + V


 + 3H


ρ + p + Φ̇2


 = 0

The scalar-modulus equation

Φ̈ + 3HΦ̇ +
∂

∂Φ
(V − p) = 0

The above equations are the independent
ones. Some other useful combinations are:
The trace equation

6 Ḣ + 12 H2 = (ρ− 3p + 4V − Φ̇2)− 6k

a2

The entropy equation

Ḣ = −1

2
(ρ + p + Φ̇2) +

k

a2



We find convenient, for the derivation of
the solution, to organize the potential V
and the thermal functions ρ, p terms
according to their scaling properties with
respect to m3/2 and T .

V4 = A m4
3/2 log




m3/2

c4T


 ,

V ′4 ≡
∂

∂Φ
V4 = 4α V4 + α Am4

3/2

V2 = Λ2m2
3/2 + Q2

2 m2
3/2 log




m3/2

c2T


 ,

V ′2 = 2α V2 + α Q2
2 m2

3/2

V0 = Q4
0 log




m3/2

c0T


 ,

V ′0 = α Q4
0



The thermal potential −p(mi, T ) can be
separated naturally in three classes:

i) The first class consists of all massless
states: ρ− 3p = 0, p′ = 0

ii) The second class consists of states
with (supersymmetric masses)
independent of m3/2.

−→
• If the temperature scale T is above their
masses, their contribution to p and ρ
is proportional to ∼ T 4

their contribution to ρ− 3p ∼ m2
i T 2

• If the temperature scale T is below their
masses, then their contribution is expo-
nentially suppressed ∼ e−m/T and thus they
are effectively decouple from the thermal
system.



iii) The third class consists of states where
their masses are mainly proportional to
m3/2.

−→ p′ = −α(ρ− 3p)Φ.

The Φ-modulus equation:

Φ̈ + 3HΦ̇ + α (4V4 + (ρ− 3p)Φ)

+α

Am4

3/2 + 2V2 + Q2
2m

2
3/2 + Q4

0


 = 0

Using the trace equation:

6 Ḣ + 12 H2 = (ρ− 3p + 4V − Φ̇2)− 6k

a2

the modulus equation becomes:

0 = Φ̈ + 3HΦ̇ + αΦ̇2 + α


6 Ḣ + 12 H2 +

6k

a2


 +

α

Am4

3/2 − 2V2 + Q2
2m

2
3/2 − 4V0 + Q4

0 − (ρ− 3p)r





Critical Solution

αΦ̇ = −H, T =
x

a
and eαΦ = m3/2 = ηT

Assuming for the moment the absence of
the logarithmic dependence in the V4-term,
(equivalent to the absence of Am4

3/2)

and using

(ρ− 3p)r = M2
2 T 2

M2
2 is independent of Φ, SUSY mass term.

• The existence of the critical solution:

0 = ( 6Ḣ + 12 H2) +
6α2

6α2 − 1


Q

4
0(1− 4log

η

c0
)




+
6α2

6α2 − 1



6k

a2 +
1

a2


 x2η2Q2

2(1− 2log
η

c2
)− x2M2

2







• the consistency of the energy equation,
• the conservations equation, and
• the modulus equation
imply that:



Λcosm =
3

2
α2 Q4

0,

k = α2 x2

−η2Q2

2(1− 2log
η

c2
) + M2

2




The lesson of this exercise is that :

• the cosmological constant scale, Λcosm

• the curvature scale, k

both are generated by :

“the scaling violating terms”

of the thermal effective potential.

• In the absence of the scaling violating
terms (or when these terms are negligible)
the modulus Φ couples to the total trace
of the energy momentum tensor.



• This special case was studied in 1986
by I. Antoniadis and C. Kounnas. They
found that the the critical trajectory is
the only stable solution under any field
fluctuation and that this trajectory is an
attractor at late times to a radiation evolv-
ing universe with :

a2 ∼ t, T 2 ∼ m2
3/2 ∼ 1/t, V ∼ 1/t2.

6. The time trajectory of a, T and Φ

The energy density equation

3H2 = ρ +
1

2
Φ̇2 − V − 3k

a2

in the background of the critical solution
becomes:




6α2 − 1

6α2




3H2 = ρ + V − 3k

a2



OR 


6α2 − 1

6α2




3H2 =
Cρ

a4 + Λcosm − 3k′
a2

The dilatation factor in frond of 3H2,
can be absorbed by a redefinition of :
Cρ, Λcosm and k′ −→

The time dependence of a is similar to
the radiation-deformed de Sitter Solutions!

a2
+ =

3

Λ



ch2




√√√√√√√√
Λ

3
t



+ ε2ρ




a2− =
3

Λ



−sh2




√√√√√√√√
Λ

3
t



+ ε2ρ




H.Firouzjahi, S.Sarangi, S.H.H.Tye, 04 ;
S.Sarangi, S.H.H.Tye, 05;

R. Brustein, S.P. de Alvis, 06;
C. Kounnas, H. Partouche, 07; . . .



It is interesting that the a− and a+ are
connected by a Gravitational (Φ-Dilatonic)
Instanton

a2
E =

3

Λ



cos2




√√√√√√√√
Λ

3
τ



+ ε2ρ




with a transition probability (a−→ a+)

< Ψ−||Ψ+ >= P ∼ e


 3
Λ − χρ

Λ2




• Where Ψ± is the wave-function of the
universe.

J.B. Hartle, S.W. Hawking, 83;
A. Vilenkin, 82, 83;

A.D. Linde, 84;
H.Firouzjahi, S.Sarangi, S.H.H.Tye, 04;

S.Sarangi, S.H.H.Tye, 05;
R. Brustein, S.P. de Alvis, 06;

C. Kounnas, H. Partouche, 07; . . . . . . ;



• χρ is proportional to the number of the
effective marginal and/or thermal degrees
of freedom at the temperature scale T0,
defined at the transition point.

C. Kounnas, H. Partouche, 07;

7. String Perspectives and Conclusion

At classical string level it seems that it
is difficult to construct exact cosmological
string solutions and is even more difficult
to obtain de Sitter like inflationary solu-
tions even in lower than four dimensions.

• Consider for instance the euclidian ver-
sion of dS3 which is an exact conformal
field theory base on SU(2)k WZW model.
However, it does not admit any real-time
analytic continuation due to the existence
of a non trivial torsion Hijk which becomes
imaginary!!



I.Antoniadis, C.Bachas, A.Sagnotti, 90;
P.K Townsend 01;

J. Sonner, P.K Townsend 06;
C.Bachas, C.Kounnas,

D.Orlando, M.Petropoulos 07;
. . .

• Indeed the only known cosmological
solution based on an exact conformal field
theory is that of SL(2, R)/U(1)−|k| ×K.
Its euclidian version is also well defined by
the gauged WZW parafermionic T-fold
SU(2)/U(1)k.

C.Kounnas, D.Luest 92;
L.Coralba, M.S.Costa, C.Kounnas 02;
C.Kounnas, N.Toumbas, J.Troost O7;

. . .
• In all String cosmological models with
a well define euclidian version,
(like for instance the SL(2, R)/U(1)−|k|×K),



the super-string analog of:
“the Stringy wave function of the universe”
can be unambiguously defined.

Furthermore the transition probabilities
can be easily calculated at the string level.
C.Kounnas, N.Toumbas, J.Troost O7.

Concluding Remark

• Our proposal however goes even beyond
the scope of the above statement; namely
towards to :

The plausible existence of cosmological
super-string solutions (Inflationary or not)

which are generated dynamically
at the quantum sting level

from a flat classical space-time and
spontaneously broken supersymmetry

(no-scale radiative-induced cosmology).


