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Overview

Semilocal Vortices and Lumps

@ Vortices are codimension 2 objects stabilized by 71 (Ggauge);

@ Lump solutions are codimension 2 objects stabilized by Wz(Mta,get).
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Overview

Semilocal Vortices and Lumps

@ Vortices are codimension 2 objects stabilized by 71 (Ggauge);

@ Lump solutions are codimension 2 objects stabilized by Wz(Mta,get).

Much is known about abelian semilocal vortices:

@ the term “semilocal” means that both global and local symmetries are
relevant;

@ semilocal vortices emerge when “large” global symmetries are present;

@ they have size moduli like lump solutions;

@ they interpolate between ANO (“local”) vortices and lumps.
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Overview

Semilocal Vortices and Lumps

@ Vortices are codimension 2 objects stabilized by 71 (Ggauge);

@ Lump solutions are codimension 2 objects stabilized by Wz(Mta,get).

Much is known about abelian semilocal vortices:

@ the term “semilocal” means that both global and local symmetries are
relevant;

@ semilocal vortices emerge when “large” global symmetries are present;

@ they have size moduli like lump solutions;

@ they interpolate between ANO (“local”) vortices and lumps.

The same and much more is going to happen in the non-abelian case! J
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Overview

Motivations

Semilocal strings and lumps have fundamental role in broad area of physics.
Just two examples that we investigated:
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Overview

Motivations

Semilocal strings and lumps have fundamental role in broad area of physics.
Just two examples that we investigated:

@ Cosmology: Cosmic Strings

» GUT models have typically large global symmetries;
See PRL 98:091602,2007, M. Eto et al. (hep-th/0609214),
about the issue of reconnection.
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Overview

Motivations

Semilocal strings and lumps have fundamental role in broad area of physics.
Just two examples that we investigated:
@ Cosmology: Cosmic Strings

» GUT models have typically large global symmetries;
See PRL 98:091602,2007, M. Eto et al. (hep-th/0609214),
about the issue of reconnection.

@ Strongly Coupled Gauge Theories:

> Large flavor symmetries are needed to preserve non abelian gauge

symmetry;
See hep-th/0611313, M. Eto et al.
about confinement and non abelian duality.
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Model

Non abelian U(N¢) gauge theory with Np “fundamental” flavour
LoTr [—LF Fov Dy H DM — & (£, — HHTY
- _fgz g P T4 (f Ne — )

where H is the N x Ng matrix of squark fields;
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Model

Non abelian U(N¢) gauge theory with Np “fundamental” flavour

1 2
L=Tr Fuus F* =Dy H D*HY — & (€10 — HHY)

- 2g?

where H is the N x Ng matrix of squark fields;

@ Bosonic sector of AV = 2 SUSY theory;
@ The Fl term & puts the theory on a Higgs branch: Vhiges = Gryg nys
@ Non abelian BPS vortices supported by m1[U(N¢)] = Z.
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Model

Non abelian U(N¢) gauge theory with Np “fundamental” flavour

1 2
L=Tr Fuus F* =Dy H D*HY — & (€10 — HHY)

- 2g?

where H is the N x Ng matrix of squark fields;

@ Bosonic sector of AV = 2 SUSY theory;
@ The Fl term & puts the theory on a Higgs branch: Vhiges = Gryg nys
@ Non abelian BPS vortices supported by m1[U(N¢)] = Z.

To have semilocal vortices we must take Ny = N¢ + N > Ne
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Moduli Matrix: Hy(z)

The BPS equation for the vortices can be put in the following form:
= g2 =
0.(270.0) = £ (gl,vc - Q—lHng) L Wi+ iWe = —2i57Y(2,2)8,5(z,2),

where we defined:

H=5Yz,2)Ho(z), Q=5(22)S(2,2), z=x+ix

@ Hy(z) is an arbitrary Nc x Ng holomorphic matrix which contains all the
moduli of the BPS equations as coefficients of its polynomial entries;
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Moduli Matrix: Hy(z)

The BPS equation for the vortices can be put in the following form:
= g2 =
0.(270.0) = £ (gl,vc - Q—lHng) L Wi+ iWe = —2i57Y(2,2)8,5(z,2),

where we defined:

H=5Yz,2)Ho(z), Q=5(22)S(2,2), z=x+ix

@ Hy(z) is an arbitrary Nc x Ng holomorphic matrix which contains all the
moduli of the BPS equations as coefficients of its polynomial entries;

@ The number of vortices, k, is defined by: det HOH(]; ~ |z|2k for large z;

@ The set of physically inequivalent Hy define the moduli space of vortices:

M/V(JJVF;k
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

Moduli Space of Semilocal Vortices

The Kahler quotient construction

Mg, Ne:k is isomorphic to the quotient:

Mok = {(Z,W,W) : GL(k, C) free on (Z,W)}/GL(k,C).

@ Zyyk, Wnoxk and lilkx,vc are constant matrices;
@ The action of V € GL(k,C) is: (VZV~1, WY1 V¥);

These matrices collect all the parameters contained in the
moduli matrix Hp;

they contain all zero modes of squarks and gauge fields
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

Parent Spaces and “Dual” Regularizations

Consider the “parent” set:

Mparent (7 W W}/ GL(k, C)

Ne,Ne;k

@ This quotient space is in general singular and non-Hausdorff;

@ A non-Hausdorff space has distinct points with no distinct neighborhoods;
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

Parent Spaces and “Dual” Regularizations

Consider the “parent” set:

regular — Mg npik C Mﬁc'e,"vf . ={Z,w,W}/GL(k,C)

C

@ This quotient space is in general singular and non-Hausdorff;

@ A non-Hausdorff space has distinct points with no distinct neighborhoods;
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

Parent Spaces and “Dual” Regularizations

Consider the “parent” set:

regular — Mg npik C M;:-‘-‘;; . ={Z,w,W}/GL(k,C)

C

@ This quotient space is in general singular and non-Hausdorff;

@ A non-Hausdorff space has distinct points with no distinct neighborhoods;

The set Mﬁlzellgc'k is symmetric under a kind of A/ = 2 Seiberg duality:
Ny < Np, Ng < Ne = Np — Ne
U

Two dual regularizations
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The "half’ Duality-Diagram

~parent
No, Nk

@ We must regularize the parent set keeping only a regular subspace...

Mere =12, w,W}/GL(k,C)
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The "half’ Duality-Diagram

~parent

Ne:, Nk

MNmNF:k

@ ...we can choose the moduli space of semilocal vortices when the gauge
group is Nc...

Mgk = {Z,W,W}/GL(k,C)  with (Z, W) free
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The "half’ Duality-Diagram

~parent
No, Nk

N

MNCJVF;/(

@ ...or take the moduli space of semilocal vortices when the gauge
group is N¢

Mg wyoxe = (2.9, 9}/GL(K.C)  with (Z,) free
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The "half’ Duality-Diagram

~parent
No, Nk

PN

Mg Neik < (Ne = Ne) > Mg ve

Deep relation between the dual spaces:
@ They are “birationally” equivalent;

@ They are linked by geometric transitions.

Walter Vinci Semilocal Vortices and Lumps



Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Simplest Example: No = Ng =1 (Np = 2), k =1

A single semilocal vortex in an abelian self dual theory

The parent space contains a weighted projective space with mixed weights:

.A’}lparent _ {Z, \U, \TJ}/C* — C(Z) X WCP(117_1)(\U, \T})

1,11

WCPY _y) = {(¥,¥) ~ (AW, A=)} is non-Hausdorff:
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Simplest Example: No = Ng =1 (Np = 2), k =1

A single semilocal vortex in an abelian self dual theory

The parent space contains a weighted projective space with mixed weights:

.A’}lparent _ {Z, \U, \TJ}/C* — C(Z) X WCP(117_1)(\U, \T})

1,11

WCPY _y) = {(¥,¥) ~ (AW, A=)} is non-Hausdorff:

@ It contains two distinct points: (1,0) # (0,1)...
> ... with no distinct neighborhood: (1,¢) ~ (¢,1), with e < 1
@ To regularize this space we throw away (0, 1)wnot free OF (1,0)10r free

@ In both case the regularized spaces are: .
WCP _y)lregur. = (1, VW) ~ (W, 1) = C(WV)
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Non-Abelian Semilocal Vortices The Moduli Space
A Duality for Semilocal Vortices

The Simplest Example: No = Ng =1 (Np = 2), k =1

A single semilocal vortex in an abelian self dual theory

The parent space contains a weighted projective space with mixed weights:

.A’}lparent _ {Z, \U, \TJ}/C* — C(Z) X WCP(lL_l)(\U, \T})

1,11

WCPY _y) = {(¥,¥) ~ (AW, A=)} is non-Hausdorff:

@ It contains two distinct points: (1,0) # (0,1)...
> ... with no distinct neighborhood: (1,¢) ~ (¢,1), with e < 1

@ To regularize this space we throw away (0, 1)wnot free OF (1,0)10r free

@ In both case the regularized spaces are: .
WCP _y)lregur. = (1, VW) ~ (W, 1) = C(WV)

This gives us the moduli space for a semilocal vortex:
M1,2;1 - M1,2;1 — C2 — C(Z)‘position X C(w(l})|size
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Vortices and Lumps
The Lump Limit An example

The Lump Limit

In the limit g — oo we get a non linear sigma model on the Higgs branch:

Vhiggs = Grng, N

which supports lump solutions: m(Gryg, ne ) = Z.
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Vortices and Lumps
The Lump Limit An example

The Lump Limit

In the limit g — oo we get a non linear sigma model on the Higgs branch:

Vhiggs = Grng, N

which supports lump solutions: m(Gryg, ne ) = Z.

@ Semilocal vortices, at g finite, are mapped into lumps in the limit g — oo;

» Some vortex configurations are mapped into zero size lumps... the limit
develops singularities (small lumps singularities).
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Vortices and Lumps
The Lump Limit An example

The Lump Limit

In the limit g — oo we get a non linear sigma model on the Higgs branch:

Vhiggs = Grng, N

which supports lump solutions: m(Gryg, ne ) = Z.

@ Semilocal vortices, at g finite, are mapped into lumps in the limit g — oo;

» Some vortex configurations are mapped into zero size lumps... the limit
develops singularities (small lumps singularities).

@ The sigma model inherits the natural duality property of Grassmanians:

> VHiggs = GrNc,NF = GrNC,NF

M%r%c-k = M., np:k/{singular points} = ./\/l,vaNF;k/{singular points}
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Vortices and Lumps
The Lump Limit An example

The Duality Diagram

~parent
No, Nk

N

Mg Neik <= (Ne > Ne) > Mg vei

@ From the moduli space of semilocal vortices My, ng;k OF M pis
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Vortices and Lumps
The Lump Limit An example

The Duality Diagram

~parent

N

MNCJVFk( w (No < Nc) """'>MNC,NF;/<

@ We can eliminate the sick points in this simple (and duality invariant) way:

lump o .
MNC,Nc;k = Me Neik VM vk
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Vortices and Lumps
The Lump Limit An example

Non Abelian Semilocal Vortex: Ng = 2, Ngp = 3

Dual To An Abelian Theory: Ng =1

C x WCP[QLLA]

@ The space WCP[2L17_1](\I117 Wy, W) has two overlapping subsets:

> CP' = WCP2(V;, ,,0)
» point = WCP?(0,0,¥) ~ (0,0,1)

(W1, Ws,0) = (W1, Wy, W) ~ (eWy, €Wy, W) =~ (0,0,0) €< 1
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Vortices and Lumps
The Lump Limit An example

Non Abelian Semilocal Vortex: Ng = 2, Ngp = 3

Dual To An Abelian Theory: Ng =1

C x WCP?

(1,1,-1]

C x C?

@ If we throw away the point (0,0, 1) we get, for the moduli space of lumps:

M2,3;k =Cx (:2 = C(Z)|position X 62(w2/w1; ®W1)|orientation,sizea

where C2 is the blow up of C2
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Vortices and Lumps
The Lump Limit An example

Non Abelian Semilocal Vortex: Ng = 2, Ngp = 3

Dual To An Abelian Theory: Ng =1

@ While if we throw away the CP!...

M1,3;k =Cx C2 = C(Z)lposition X C2({|’JW1; ®W2)|2sizes
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Vortices and Lumps
The Lump Limit An example

Non Abelian Semilocal Vortex: Ng = 2, Ngp = 3

Dual To An Abelian Theory: Ng =1

@ Here it is easy to see the geometric relation between the moduli spaces of
the dual theories:

The moduli space of the non abelian theory is the blow-up of that of the abelian
dual theory. J
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Vortices and Lumps
The Lump Limit An example

Non Abelian Semilocal Vortex: Ng = 2, Ngp = 3

Dual To An Abelian Theory: Ng =1

C x WCP[QLLA]

C x (C?)*
@ To obtain the moduli space of lumps:

» eliminate the CP! from C?> — (C?)* = C2/(0,0)
> eliminate the point from C> — (C2)* = C2/(0,0)

METR = C(Z) x (C2)* (U, Uuy)
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Summary

Summary

@ The moduli space of semilocal vortices of “dual”, (N¢ < NC), theories
descend, after a process of regularization, from the same parent space;

@ These dual spaces are linked by geometric transitions;
@ In the lump limit they reduce to the same space of lumps;

@ They are obtained from the moduli space of lumps by eliminating small lump
singularities with insertions of “local” vortices.
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Summary

Summary

@ The moduli space of semilocal vortices of “dual”, (N¢ < Nc), theories
descend, after a process of regularization, from the same parent space;

@ These dual spaces are linked by geometric transitions;
@ In the lump limit they reduce to the same space of lumps;

@ They are obtained from the moduli space of lumps by eliminating small lump
singularities with insertions of “local” vortices.

Outlook:

@ There is still much to learn about dynamics: effective actions,
non-normalizable modes...

@ It would be very interesting to generalize to other gauge groups: SO(N),
Usp(N)...
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