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Gravity is not power-counting renormalizable

Does this mean that quantum field theory is
Inadequate to quantize gravity, or that power-
counting renormalizability is not an essential
requirement for the fundamental theories of
nature?

In this talk | report about some results on the
investigation of non-renormalizable theories

| show that in some cases it is possible to give
sense to power-counting non-renormalizable
theories and work with them
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* An example is the D=3 four-fermion model in the
large N limit

L=y dy ——@UJ)

It is also an example of asymptotically safe theory
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* | focus on finite theories, namely theories
whose divergences can be removed by
means of field redefinitions only

* No running of couplings: all beta functions
vanish

 The theories are not conformal because
they contain couplings with negative
dimensionalities in units of mass
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* Part I: Finiteness of quantum gravity
coupled with matter in three spacetime
dimensions

 Part ll: Finite chiral non-renormalizable
deformations of interacting superconformal
field theories in D=4

e Part lll: “Quasi finite” theories in D=4, such
as the Pauli deformation of Yang-Mills
theory



Generalities

« C = conformal field theory of interacting fields ¢



Generalities

« C = conformal field theory of interacting fields ¢

* O,{¢) = basis of local irrelevant deformations of
C — up to terms proportional to the field
equations and total derivatives



Generalities

« C = conformal field theory of interacting fields ¢

* O,{¢) = basis of local irrelevant deformations of
C — up to terms proportional to the field
equations and total derivatives

» A; = essential irrelevant couplings (dimensionless)



Generalities

C = conformal field theory of interacting fields @

O,{p) = basis of local irrelevant deformations of
C — up to terms proportional to the field
equations and total derivatives

A, = essential irrelevant couplings (dimensionless)
i = level = d,-d (dl. =dimQ, , d=spacetime dim)

[Kk]=-1 a = marginal couplings



Generalities

C = conformal field theory of interacting fields @

O,{p) = basis of local irrelevant deformations of
C — up to terms proportional to the field
equations and total derivatives

A, = essential irrelevant couplings (dimensionless)
i = level = d,-d (dl. =dimQ, , d=spacetime dim)

L=L|p,al+ EKizl)\’ilOiI

l

[Kk]=-1 a = marginal couplings
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Each 8 depends on its own A only linearly. Schematically,

ﬁ)\. =)/)L((X))\.+(S<(OC,)\.)

where y 1s the anomalous dimension of A and 0_ 1s the set of terms

depending on the As with lower dimensionalities
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Finiteness conditions

The finiteness conditions are p, =0, whichimply

5.(a,A) ()
- =" B, =74
V() 75 (@)
There exist solutions whenevery = 0, if 0_ = 0, otherwise when 0_ =0

A=

¢ i0 5% (a)
L=Lg, 0, - O,
[p,a]l+x0,(p) ZK @) (@)

Operators with v, = 0 are called finite

Operators with 0_ = 0 are called protected

The theory must interact!

 The conformal invariance of the renormalizable subsector ensures
that the conditions can be studied algorithmically
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Solutions to the finiteness conditions

* The finiteness conditions can be solved if
there exists no finite irrelevant unprotected
operator

* The solution is non-trivial if there exists a
finite irrelevant operator
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Examples

* Protected operators are the chiral operators of
supersymmetric theories

(I)n9 ‘)/(I)n = n‘)/(l)

* Finite operators are the stress-tensor, the gauge
currents, the chiral operators of superconformal

field theories
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Coupling to gravity

If we couple a theory to gravity the renormalizable subsector C
contains a free subsector (spin 2)

The operators constructed with the curvature tensors are finite
(from the C viewpoint), but not protected

(renormalization turns them on even when they are absent)

D=4:
uvaefp p po
R, R R ap
(at two loops)

D=3: Riemann -> Ricci -> matter stress tensor

There is no essential operator with Riemann. Moreover the Einstein
term is finite, but obviously protected (because it is the one with the
lowest dimensionality)

So, quantum gravity coupled with matter in D=3 can be quantized
as a finite theory
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Chern-Simons U(1) gauge theory in D=3
coupled with massless fermions and gravity

« Lagrangian |

L = Tg_ZSMVPFMVAP +1;(a + l@A)l/)
* Coupling with gravity
1 1
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The finiteness conditions A, =A,A,,=A, are solved by
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Lagrangian: | _ %eRJ, 1 e"F,, A, +elplDI/J
K

e ) xSy ) <o)
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Supersymmetric finite theories

« Take C to be N=4 supersymmetric Yang-Mills
theory, or any superconformal field theory

 Deform it with the chiral non-renormalizable
(finite, protected) operator

", n>3: y,=0, vy .=ny,=0

« Determine the “renormalization queue” of the
non-renormalizable perturbation solving
algorithmically the finiteness equations
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Quasi finiteness

 Conformal field theories: beta=0, no scale

* Finite theories: all couplings have Z=1, but
there can be dimensionful parameters

Examples: free massive field,
N=4 SYMT + N=1 chiral mass

« Quasi finite theory: dimensionless
couplings have beta=0, but the scale can
run

Example: N=4 SYMT + N=0 mass
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Quasi finite non-renormalizable

theories
First A : b, =Ayi(Q) A= ul In general,y, = 0
Other As: take dimensionless ratios 7, = )L; , R = [A:]
A [A]

B. = fi(r,a) : we canstudy solutionsof S, =0

Example: Pauli deformation of non-Abelian Yang-Mills theories

3, Ag?N, 25 [g?N,\* & g?N.\"
- o="3%e 7 (%) + S (fom

. I
L= o (P + TP

A+ O(A?) A=11-2N;/N. < 1



Lowest level: Pauli term
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Lowest level: Pauli term
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Lowest level: Pauli term g, = SANE=5) 2
| 167_(_211\{(’ 75
a T lpa | 9N [
Lpanli = KAZ) .7:#,,, \Il,' ﬂjou,lj\llj’ A 2A /75
AA) = AMp) (,L_t> :

Second level: Fcube plus four-fermion terms
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REp ="

6!

‘CF 3 = C ZC fabc fa. f-b fC

pv vpY pp



. 2 NS 2
Lowest level: Pauli term 8y = ’\(f\c =5 2 5a

Lpauli = KAL) ]__ZV U, THO'#,, )\( ) (A\)QA/TS
L .

Second level: Fcube plus four-fermion terms

3q 2 i'\'rc _ )\2 N f
4m2e
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h lu CZ fab(fa f‘b f(
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Lowest level: Pauli term g = TANE=5) 2
Lpauli = KAZ ]-'Z,, U, T"UW A\ 24775
A(p) ( > :

Second level: Fcube plus four-fermion terms

39° N, NNy
K* ,u — b CZ¢=¢ <1+ fﬂ.g,-() N 471.21
Lps = ———CZ¢ fF 5, Fo T, ) )
=5
, , A2
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S=(T;v),  P=(Tinll)? V=(Tiynu)’, A= @fmw,
1 ¢ =1 1 1
T= (\I]zo’ul/\lll)za SI = (\I’zlll},)(\lquj{)a P, (qja /5 \Ij),)( ,J‘I’{),
— c
V= (T '7“\1’1) A = (T, 57,012, T = (\I! 0V )( 0,“,\1!{).
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Conclusions

|t is possible to construct finite non-
renormalizable theories algorithmically

 What is necessary for the construction to work?
One finite operator with dimensionality greater
than four

 When does the construction not work? When
there exist infinitely many finite non-protected

operators



