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• Gravity is not power-counting renormalizable
• Does this mean that quantum field theory is

inadequate to quantize gravity, or that power-
counting renormalizability is not an essential
requirement for the fundamental theories of
nature?

• In this talk I report about some results on the
investigation of non-renormalizable theories

• I show that in some cases it is possible to give
sense to power-counting non-renormalizable
theories and work with them
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• The known examples of non-renormalizable
theories we can make sense of are very few

• An example is the D=3 four-fermion model in the
large N limit
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• I focus on finite theories, namely theories
whose divergences can be removed by
means of field redefinitions only

• No running of couplings: all beta functions
vanish

• The theories are not conformal because
they contain couplings with negative
dimensionalities in units of mass
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• Part I: Finiteness of quantum gravity
coupled with matter in three spacetime
dimensions

• Part II: Finite chiral non-renormalizable
deformations of interacting superconformal
field theories in D=4

• Part III: “Quasi finite” theories in D=4, such
as the Pauli deformation of Yang-Mills
theory

Outline of the talk
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Generalities

• C = conformal field theory of interacting fields
• O (  ) = basis of local irrelevant deformations of

C – up to terms proportional to the field
equations and total derivatives

•     = essential irrelevant couplings  (dimensionless)
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Beta functions
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Finiteness conditions

• The theory must interact!
• The conformal invariance of the renormalizable subsector ensures

that the conditions can be studied algorithmically
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Solutions to the finiteness conditions

• The finiteness conditions can be solved if
there exists no finite irrelevant unprotected
operator

• The solution is non-trivial if there exists a
finite irrelevant operator



Examples



Examples

• Protected operators are the chiral operators of
supersymmetric theories
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Examples

• Protected operators are the chiral operators of
supersymmetric theories

• Finite operators are the stress-tensor, the gauge
currents, the chiral operators of superconformal
field theories
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Coupling to gravity
• If we couple a theory to gravity the renormalizable subsector C

contains a free subsector (spin 2)
• The operators constructed with the curvature tensors are finite

(from the C viewpoint), but not protected
     (renormalization turns them on even when they are absent)
       D=4:

                                                                                (at two loops)
• D=3: Riemann -> Ricci -> matter stress tensor
    There is no essential operator with Riemann. Moreover the Einstein

term is finite, but obviously protected (because it is the one with the
lowest dimensionality)

• So, quantum gravity coupled with matter in D=3 can be quantized
as a finite theory
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Chern-Simons U(1) gauge theory in D=3
coupled with massless fermions and gravity

• Lagrangian

• Coupling with gravity
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• Take C to be N=4 supersymmetric Yang-Mills
theory, or any superconformal field theory

• Deform it with the chiral non-renormalizable
(finite, protected) operator
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Supersymmetric finite theories

• Take C to be N=4 supersymmetric Yang-Mills
theory, or any superconformal field theory

• Deform it with the chiral non-renormalizable
(finite, protected) operator

• Determine the “renormalization queue” of the
non-renormalizable perturbation solving
algorithmically the finiteness equations

 0n      0,     :3n    , n ===>! !!! """n
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Quasi finiteness

• Conformal field theories: beta=0, no scale
• Finite theories: all couplings have Z=1, but

there can be dimensionful parameters
   Examples: free massive field,
     N=4 SYMT + N=1 chiral mass
• Quasi finite theory: dimensionless

couplings have beta=0, but the scale can
run

Example: N=4 SYMT + N=0 mass
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Conclusions
• It is possible to construct finite non-

renormalizable theories algorithmically
• What is necessary for the construction to work?

One finite operator with dimensionality greater
than four

• When does the construction not work? When
there exist infinitely many finite non-protected
operators


