Supersymmetric And Non-supersymmetric Finite Non-Renormalizable Theories

D. Anselmi 21-3-2007

• Gravity is not power-counting renormalizable

- Gravity is not power-counting renormalizable
- Does this mean that quantum field theory is inadequate to quantize gravity, or that powercounting renormalizability is not an essential requirement for the fundamental theories of nature?

- Gravity is not power-counting renormalizable
- Does this mean that quantum field theory is inadequate to quantize gravity, or that powercounting renormalizability is not an essential requirement for the fundamental theories of nature?
- In this talk I report about some results on the investigation of non-renormalizable theories

- Gravity is not power-counting renormalizable
- Does this mean that quantum field theory is inadequate to quantize gravity, or that power-counting renormalizability is not an essential requirement for the fundamental theories of nature?
- In this talk I report about some results on the investigation of non-renormalizable theories
- I show that in some cases it is possible to give sense to power-counting non-renormalizable theories and work with them

• The known examples of non-renormalizable theories we can make sense of are very few

- The known examples of non-renormalizable theories we can make sense of are very few
- An example is the D=3 four-fermion model in the large N limit

$$L = \overline{\psi} \partial \psi - \frac{1}{4M} \left(\overline{\psi} \psi \right)$$

- The known examples of non-renormalizable theories we can make sense of are very few
- An example is the D=3 four-fermion model in the large N limit

$$L = \overline{\psi} \partial \psi - \frac{1}{4M} \left(\overline{\psi} \psi \right)$$

It is also an example of asymptotically safe theory

 I focus on finite theories, namely theories whose divergences can be removed by means of field redefinitions only

- I focus on finite theories, namely theories whose divergences can be removed by means of field redefinitions only
- No running of couplings: all beta functions vanish

- I focus on finite theories, namely theories whose divergences can be removed by means of field redefinitions only
- No running of couplings: all beta functions vanish
- The theories are not conformal because they contain couplings with negative dimensionalities in units of mass

Outline of the talk

• Part I: Finiteness of quantum gravity coupled with matter in three spacetime dimensions

Outline of the talk

- Part I: Finiteness of quantum gravity coupled with matter in three spacetime dimensions
- Part II: Finite chiral non-renormalizable deformations of interacting superconformal field theories in D=4

Outline of the talk

- Part I: Finiteness of quantum gravity coupled with matter in three spacetime dimensions
- Part II: Finite chiral non-renormalizable deformations of interacting superconformal field theories in D=4
- Part III: "Quasi finite" theories in D=4, such as the Pauli deformation of Yang-Mills theory

• C = conformal field theory of interacting fields φ

- C = conformal field theory of interacting fields φ
- O_{il}(φ) = basis of local irrelevant deformations of C – up to terms proportional to the field equations and total derivatives

- C = conformal field theory of interacting fields φ
- O_{il}(φ) = basis of local irrelevant deformations of C – up to terms proportional to the field equations and total derivatives
- λ_{iI} = essential irrelevant couplings (dimensionless)

- C = conformal field theory of interacting fields φ
- O_{il}(φ) = basis of local irrelevant deformations of C – up to terms proportional to the field equations and total derivatives
- λ_{iI} = essential irrelevant couplings (dimensionless)

•
$$\mathbf{i} = level = d_i - d$$
 $(d_i = \dim O_i, d = \text{spacetime dim})$

$$[\kappa] = -1$$
 $\alpha = \text{marginal couplings}$

- C = conformal field theory of interacting fields φ
- O_{il}(φ) = basis of local irrelevant deformations of C – up to terms proportional to the field equations and total derivatives
- λ_{iI} = essential irrelevant couplings (dimensionless)

•
$$\mathbf{i} = level = d_i - d$$
 $(d_i = \dim O_i, d = \text{spacetime dim})$

$$L = L_C[\varphi, \alpha] + \sum_i \kappa^i \sum_I \lambda_{iI} O_{iI}$$

 $[\kappa] = -1$ $\alpha = \text{marginal couplings}$

Beta functions

Dimensional counting ensures that the beta functions have the form

$$\beta_{iI} = \sum_{\{n_{jJ}^{II}\}} f_{\{n_{jJ}^{II}\}}(\alpha) \prod_{j \le 1} \prod_{J=1}^{N_{j}} (\lambda_{jJ})^{n_{jJ}^{II}}$$

where
$$\sum_{j \le i} j \sum_{J=1}^{N_{j}} n_{jJ}^{II} = i$$

Beta functions

Dimensional counting ensures that the beta functions have the form

$$\beta_{iI} = \sum_{\{n_{jJ}^{II}\}} f_{\{n_{jJ}^{II}\}}(\alpha) \prod_{j \le 1} \prod_{J=1}^{N_{j}} (\lambda_{jJ})^{n_{jJ}^{II}}$$
where
$$\sum_{j \le i} j \sum_{J=1}^{N_{j}} n_{jJ}^{II} = i$$

Each β depends on its own λ only linearly. Schematically,

$$\beta_{\lambda} = \gamma_{\lambda}(\alpha)\lambda + \delta_{<}(\alpha,\lambda)$$

where γ is the anomalous dimension of λ and $\delta_{<}$ is the set of terms depending on the λ s with lower dimensionalities

The finiteness conditions are $\beta_{\lambda} = 0$, which imply $\lambda = -\frac{\delta_{\langle}(\alpha, \lambda)}{\gamma_{\lambda}(\alpha)} = -\frac{\overline{\delta}_{\langle}(\alpha)}{\gamma_{\lambda}(\alpha)}$

There exist solutions whenever $\gamma \neq 0$, if $\delta_{<} \neq 0$, otherwise when $\delta_{<} = 0$

The finiteness conditions are $\beta_{\lambda} = 0$, which imply $\delta_{\lambda}(\alpha, \lambda) = \overline{\delta}_{\lambda}(\alpha)$

$$\lambda = -\frac{\delta_{<}(\alpha, \lambda)}{\gamma_{\lambda}(\alpha)} = -\frac{\delta_{<}(\alpha)}{\gamma_{\lambda}(\alpha)}$$

There exist solutions whenever $\gamma \neq 0$, if $\delta_{<} \neq 0$, otherwise when $\delta_{<} = 0$

$$L = L_C[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{\overline{\delta}_{i\ell}(\alpha)}{\gamma_{i\ell}(\alpha)} O_{i\ell}(\varphi)$$

The *finiteness conditions* are $\beta_{\lambda} = 0$, which imply

$$\lambda = -\frac{\delta_{<}(\alpha,\lambda)}{\gamma_{\lambda}(\alpha)} = -\frac{\delta_{<}(\alpha)}{\gamma_{\lambda}(\alpha)}$$

There exist solutions whenever $\gamma \neq 0$, if $\delta_{<} \neq 0$, otherwise when $\delta_{<} = 0$

$$L = L_C[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{\overline{\delta}_{i\ell}(\alpha)}{\gamma_{i\ell}(\alpha)} O_{i\ell}(\varphi)$$

Operators with $\gamma_{\lambda} = 0$ are called finite Operators with $\delta_{<} = 0$ are called protected

The *finiteness conditions* are $\beta_{\lambda} = 0$, which imply

$$\lambda = -\frac{\delta_{<}(\alpha,\lambda)}{\gamma_{\lambda}(\alpha)} = -\frac{\overline{\delta}_{<}(\alpha)}{\gamma_{\lambda}(\alpha)} \qquad \beta_{\ell} = \gamma_{\ell}\lambda_{\ell}$$

There exist solutions whenever $\gamma \neq 0$, if $\delta_{<} \neq 0$, otherwise when $\delta_{<} = 0$

$$L = L_C[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{\overline{\delta}_{i\ell}(\alpha)}{\gamma_{i\ell}(\alpha)} O_{i\ell}(\varphi)$$

Operators with $\gamma_{\lambda} = 0$ are called finite Operators with $\delta_{<} = 0$ are called protected

- The theory must interact!
- The conformal invariance of the renormalizable subsector ensures that the conditions can be studied algorithmically

Solutions to the finiteness conditions

Solutions to the finiteness conditions

 The finiteness conditions can be solved if there exists no finite irrelevant unprotected operator

Solutions to the finiteness conditions

- The finiteness conditions can be solved if there exists no finite irrelevant unprotected operator
- The solution is non-trivial if there exists a finite irrelevant operator

Examples

Examples

 Protected operators are the chiral operators of supersymmetric theories

$$\Phi^n, \qquad \gamma_{\Phi^n} = n\gamma_{\Phi}$$

Examples

 Protected operators are the chiral operators of supersymmetric theories

$$\Phi^n, \qquad \gamma_{\Phi^n} = n\gamma_{\Phi}$$

• Finite operators are the stress-tensor, the gauge currents, the chiral operators of superconformal field theories

$$\gamma_{\Phi} = 0$$

$$L = L_{C}[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{\overline{\delta}_{i\ell}(\alpha)}{\gamma_{i\ell}(\alpha)} O_{i\ell}(\varphi)$$

$$\gamma_{i\ell} \approx \alpha \qquad \delta_{\ell} = 0 \qquad \lambda_{2\ell} = -\frac{\delta_{2\ell}}{\gamma_{2\ell}} \approx \frac{1}{\alpha}$$
$$\delta_{i\ell} \approx \prod_{j < i} \lambda_{j\ell}^{n_j} \qquad \sum_{j < i} jn_j = i \qquad \sum_{j < i} n_j \ge 2$$
General behavior :
$$\lambda_{j\ell} \approx \frac{1}{\alpha^{j-1}}$$

$$L = L_C[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{\overline{\delta}_{i\ell}(\alpha)}{\gamma_{i\ell}(\alpha)} O_{i\ell}(\varphi)$$

$$\gamma_{i\ell} \approx \alpha \qquad \delta_{\ell} = 0 \qquad \lambda_{2\ell} = -\frac{\delta_{2\ell}}{\gamma_{2\ell}} \approx \frac{1}{\alpha}$$
$$\delta_{i\ell} \approx \prod_{j < i} \lambda_{j\ell}^{n_j} \qquad \sum_{j < i} jn_j = i \qquad \sum_{j < i} n_j \ge 2$$
General behavior :
$$\lambda_{j\ell} \approx \frac{1}{\alpha^{j-1}}$$

The proof is by induction :

$$\lambda_{j\ell} \approx \frac{1}{\alpha^{j-1}} \quad \text{for} \quad j < n \quad \text{implies}$$

$$\lambda_{n\ell} \approx \frac{\delta_{n\ell}}{\gamma_{n\ell}} \approx \frac{1}{\alpha} \prod_{j < i} \lambda_{j\ell}^{n_j} \approx \frac{1}{\alpha^{1+\sum_{j < i} (j-1)n_j}} = \frac{1}{\alpha^{n+1-\sum_{j < i} n_j}}$$

$$L = L_{C}[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{\overline{\delta}_{i\ell}(\alpha)}{\gamma_{i\ell}(\alpha)} O_{i\ell}(\varphi)$$

$$\gamma_{i\ell} \approx \alpha \qquad \delta_{\ell} = 0 \qquad \lambda_{2\ell} = -\frac{\delta_{2\ell}}{\gamma_{2\ell}} \approx \frac{1}{\alpha}$$
$$\delta_{i\ell} \approx \prod_{j < i} \lambda_{j\ell}^{n_j} \qquad \sum_{j < i} jn_j = i \qquad \sum_{j < i} n_j \ge 2$$

General behavior :

 $\lambda_{j\ell} \approx \frac{1}{\alpha^{j-1}}$

$$L \approx L_{C}[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{C_{i\ell}}{\alpha^{i-1}} O_{i\ell}(\varphi) = L_{C}[\varphi, \alpha] + \alpha \left\{ \overline{\kappa}^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \overline{\kappa}^{i\ell} c_{i\ell} O_{i\ell}(\varphi) \right\}$$

$$L = L_{C}[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{\overline{\delta}_{i\ell}(\alpha)}{\gamma_{i\ell}(\alpha)} O_{i\ell}(\varphi)$$

$$\gamma_{i\ell} \approx \alpha \qquad \delta_{\ell} = 0 \qquad \lambda_{2\ell} = -\frac{\delta_{2\ell}}{\gamma_{2\ell}} \approx \frac{1}{\alpha}$$
$$\delta_{i\ell} \approx \prod_{j < i} \lambda_{j\ell}^{n_j} \qquad \sum_{j < i} jn_j = i \qquad \sum_{j < i} n_j \ge 2$$

General behavior :

$$\lambda_{j\ell} \approx \frac{1}{\alpha^{j-1}}$$

$$L \approx L_{C}[\varphi, \alpha] + \kappa^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \kappa^{i\ell} \frac{C_{i\ell}}{\alpha^{i-1}} O_{i\ell}(\varphi) = L_{C}[\varphi, \alpha] + \alpha \left\{ \overline{\kappa}^{\ell} O_{\ell}(\varphi) - \sum_{i=2} \overline{\kappa}^{i\ell} c_{i\ell} O_{i\ell}(\varphi) \right\}$$

 $\kappa = \overline{\kappa} \alpha^{1/\ell}$ $\overline{M}_P = M_P \alpha^{1/\ell} =$ "effective Planck mass"

• If we couple a theory to gravity the renormalizable subsector C contains a free subsector (spin 2)

- If we couple a theory to gravity the renormalizable subsector C contains a free subsector (spin 2)
- The operators constructed with the curvature tensors are finite (from the C viewpoint), but not protected (renormalization turns them on even when they are absent)

D=4:

$$R_{\mu
u
ho\sigma}R^{\mu
ulphaeta}R^{
ho\sigma}{}_{lphaeta}$$

(at two loops)

- If we couple a theory to gravity the renormalizable subsector C contains a free subsector (spin 2)
- The operators constructed with the curvature tensors are finite (from the C viewpoint), but not protected (renormalization turns them on even when they are absent)

$$R_{\mu
u
ho\sigma}R^{\mu
ulphaeta}R^{
ho\sigma}{}_{lphaeta}$$

(at two loops)

• D=3: Riemann -> Ricci -> matter stress tensor

There is no essential operator with Riemann. Moreover the Einstein term is finite, but obviously protected (because it is the one with the lowest dimensionality)

- If we couple a theory to gravity the renormalizable subsector C contains a free subsector (spin 2)
- The operators constructed with the curvature tensors are finite (from the C viewpoint), but not protected
 (renormalization turns them on even when they are absent)

(renormalization turns them on even when they are absent)

D=4:

$$R_{\mu
u
ho\sigma}R^{\mu
ulphaeta}R^{
ho\sigma}{}_{lphaeta}$$

(at two loops)

• D=3: Riemann -> Ricci -> matter stress tensor

There is no essential operator with Riemann. Moreover the Einstein term is finite, but obviously protected (because it is the one with the lowest dimensionality)

• So, quantum gravity coupled with matter in D=3 can be quantized as a finite theory

Chern-Simons U(1) gauge theory in D=3 coupled with massless fermions and gravity

Chern-Simons U(1) gauge theory in D=3 coupled with massless fermions and gravity

• Lagrangian $L = \frac{1}{2g^2} \varepsilon^{\mu\nu\rho} F_{\mu\nu} A_{\rho} + \overline{\psi} (\partial + ieA) \psi$ Chern-Simons U(1) gauge theory in D=3 coupled with massless fermions and gravity

- Lagrangian $L = \frac{1}{2g^2} \varepsilon^{\mu\nu\rho} F_{\mu\nu} A_{\rho} + \overline{\psi} (\partial + ieA) \psi$
- Coupling with gravity

$$\begin{split} L &= \frac{1}{2\kappa} eR + \frac{1}{2g^2} \varepsilon^{\mu\nu\rho} F_{\mu\nu} A_{\rho} + e\overline{\psi} D\psi \\ &+ \kappa \lambda_1 \frac{e}{4} \left(\overline{\psi} \psi \right) + \kappa \lambda_2 \frac{e}{4} \left(\overline{\psi} \gamma^a \psi \right) + O(\kappa^2) \end{split}$$

The two-loop results give

$$\lambda_{1B} = \lambda_1 + \frac{g^4 n_f (8\lambda_1 + 9\lambda_2)}{96\pi^2 \varepsilon}, \qquad \lambda_{2B} = \lambda_2 + \frac{g^4 n_f (12\lambda_1 - 8\lambda_2 - 5)}{384\pi^2 \varepsilon}$$

The two-loop results give

$$\lambda_{1B} = \lambda_1 + \frac{g^4 n_f (8\lambda_1 + 9\lambda_2)}{96\pi^2 \varepsilon}, \qquad \lambda_{2B} = \lambda_2 + \frac{g^4 n_f (12\lambda_1 - 8\lambda_2 - 5)}{384\pi^2 \varepsilon}$$

The finiteness conditions $\lambda_{1B} = \lambda_1, \lambda_{2B} = \lambda_2$ are solved by

$$\lambda_1 = \frac{45}{172}, \quad \lambda_2 = -\frac{10}{43}$$

The two-loop results give

$$\lambda_{1B} = \lambda_1 + \frac{g^4 n_f (8\lambda_1 + 9\lambda_2)}{96\pi^2 \varepsilon}, \qquad \lambda_{2B} = \lambda_2 + \frac{g^4 n_f (12\lambda_1 - 8\lambda_2 - 5)}{384\pi^2 \varepsilon}$$

The finiteness conditions $\lambda_{1B} = \lambda_1, \lambda_{2B} = \lambda_2$ are solved by

$$\lambda_1 = \frac{45}{172}, \quad \lambda_2 = -\frac{10}{43}$$

Lagrangian:

$$L = \frac{1}{2\kappa}eR + \frac{1}{2g^2}\varepsilon^{\mu\nu\rho}F_{\mu\nu}A_{\rho} + e\overline{\psi}D\psi$$
$$+ \kappa\frac{45}{172}\frac{e}{4}(\overline{\psi}\psi) - \kappa\frac{10}{43}\frac{e}{4}(\overline{\psi}\gamma^{a}\psi) + O(\kappa^{2})$$

• Take C to be N=4 supersymmetric Yang-Mills theory, or any superconformal field theory

- Take C to be N=4 supersymmetric Yang-Mills theory, or any superconformal field theory
- Deform it with the chiral non-renormalizable (finite, protected) operator

$$\Phi^n, \quad n > 3: \quad \gamma_{\Phi} = 0, \qquad \gamma_{\Phi^n} = n\gamma_{\Phi} = 0$$

- Take C to be N=4 supersymmetric Yang-Mills theory, or any superconformal field theory
- Deform it with the chiral non-renormalizable (finite, protected) operator

$$\Phi^n, \quad n > 3: \quad \gamma_{\Phi} = 0, \qquad \gamma_{\Phi^n} = n\gamma_{\Phi} = 0$$

• Determine the "renormalization queue" of the non-renormalizable perturbation solving algorithmically the finiteness equations

Quasi finiteness

Quasi finiteness

- Conformal field theories: beta=0, no scale
- Finite theories: all couplings have Z=1, but there can be dimensionful parameters
 Examples: free massive field,
 N=4 SYMT + N=1 chiral mass

Quasi finiteness

- Conformal field theories: beta=0, no scale
- Finite theories: all couplings have Z=1, but there can be dimensionful parameters
 Examples: free massive field,
 N=4 SYMT + N=1 chiral mass
- Quasi finite theory: dimensionless couplings have beta=0, but the scale can run

Example: N=4 SYMT + N=0 mass

Quasi finite non-renormalizable theories

First λ : $\beta_{\lambda_1} = \lambda_1 \gamma_1(\alpha)$ $\lambda_1 \approx \mu^{\gamma_1}$ In general, $\gamma_1 \neq 0$ Other λ s: take dimensionless ratios $r_i = \frac{\lambda_i}{\lambda_1^{n_i}}$, $n_i = \frac{[\lambda_i]}{[\lambda_1]}$ $\beta_{r_i} = f_i(r, \alpha)$: we can study solutions of $\beta_{r_i} = 0$

Quasi finite non-renormalizable theories

First λ : $\beta_{\lambda_1} = \lambda_1 \gamma_1(\alpha)$ $\lambda_1 \approx \mu^{\gamma_1}$ In general, $\gamma_1 \neq 0$ Other λ s: take dimensionless ratios $r_i = \frac{\lambda_i}{\lambda_1^{n_i}}$, $n_i = \frac{[\lambda_i]}{[\lambda_1]}$ $\beta_{r_i} = f_i(r, \alpha)$: we can study solutions of $\beta_{r_i} = 0$

Example: Pauli deformation of non-Abelian Yang-Mills theories

$$\mathcal{L} = \frac{\mu^{-\varepsilon}}{4g^2 Z_g^2} (\mathcal{F}^a_{\mu\nu})^2 + \overline{\Psi}^I_i \mathcal{D}_{ij} \Psi^I_j,$$

Quasi finite non-renormalizable theories

First λ : $\beta_{\lambda_1} = \lambda_1 \gamma_1(\alpha)$ $\lambda_1 \approx \mu^{\gamma_1}$ In general, $\gamma_1 \neq 0$ Other λ s: take dimensionless ratios $r_i = \frac{\lambda_i}{\lambda_1^{n_i}}$, $n_i = \frac{[\lambda_i]}{[\lambda_1]}$ $\beta_{r_i} = f_i(r, \alpha)$: we can study solutions of $\beta_{r_i} = 0$

Example: Pauli deformation of non-Abelian Yang-Mills theories

$$\mathcal{L} = \frac{\mu^{-\epsilon}}{4g^2 Z_g^2} (\mathcal{F}_{\mu\nu}^a)^2 + \overline{\Psi}_i^I \mathcal{D}_{ij} \Psi_j^I, \qquad \frac{\beta_g}{g} = -\frac{\Delta}{3} \frac{g^2 N_c}{16\pi^2} + \frac{25}{2} \left(\frac{g^2 N_c}{16\pi^2}\right)^2 + \sum_{n=3}^{\infty} c_n \left(\frac{g^2 N_c}{16\pi^2}\right)^n \\ \frac{g_*^2 N_c}{16\pi^2} = \frac{2}{75} \Delta + \mathcal{O}(\Delta^2) \qquad \Delta \equiv 11 - 2N_f / N_c \ll 1$$

Lowest level: Pauli term

$$\mathcal{L}_{\text{Pauli}} = \kappa \lambda Z_{\lambda} \mathcal{F}^{a}_{\mu\nu} \overline{\Psi}^{I}_{i} T^{a}_{ij} \sigma_{\mu\nu} \Psi^{I}_{j},$$

Lowest level: Pauli term

$$\beta_{\lambda} = \frac{g^2 \lambda (N_c^2 - 5)}{16\pi^2 N_c} \sim \frac{2}{75} \lambda \Delta$$

$$\mathcal{L}_{\text{Pauli}} = \kappa \lambda Z_{\lambda} \mathcal{F}^{a}_{\mu\nu} \overline{\Psi}^{I}_{i} T^{a}_{ij} \sigma_{\mu\nu} \Psi^{I}_{j},$$

$$\lambda(\Lambda) = \lambda(\mu) \left(\frac{\Lambda}{\mu}\right)^{2\Delta/75}.$$

Lowest level: Pauli term $\beta_{\lambda} = \frac{g^2 \lambda (N_c^2 - 5)}{16\pi^2 N_c} \sim \frac{2}{75} \lambda \Delta$

$$\mathcal{L}_{\text{Pauli}} = \kappa \lambda Z_{\lambda} \mathcal{F}^{a}_{\mu\nu} \overline{\Psi}^{I}_{i} T^{a}_{ij} \sigma_{\mu\nu} \Psi^{I}_{j}, \qquad \lambda(\Lambda) = \lambda(\mu) \left(\frac{\Lambda}{\mu}\right)^{2\Delta/75}$$

.

Second level: Fcube plus four-fermion terms

$$\mathcal{L}_{F^3} = \frac{\kappa^2 \mu^{-\varepsilon}}{6!} \zeta Z_{\zeta} f^{abc} \mathcal{F}^a_{\mu\nu} \mathcal{F}^b_{\nu\rho} \mathcal{F}^c_{\rho\mu}$$

Lowest level: Pauli term $\beta_{\lambda} = \frac{g^2 \lambda (N_c^2 - 5)}{16\pi^2 N_c} \sim \frac{2}{75} \lambda \Delta$

$$\mathcal{L}_{\text{Pauli}} = \kappa \lambda Z_{\lambda} \ \mathcal{F}^{a}_{\mu\nu} \ \overline{\Psi^{I}_{i}} T^{a}_{ij} \sigma_{\mu\nu} \Psi^{I}_{j}, \qquad \qquad \lambda(\Lambda) = \lambda(\mu) \left(\frac{\Lambda}{\mu}\right)^{2\Delta/75}.$$

Second level: Fcube plus four-fermion terms

$$\mathcal{L}_{F^3} = \frac{\kappa^2 \mu^{-\varepsilon}}{6!} \zeta Z_{\zeta} f^{abc} \mathcal{F}^a_{\mu\nu} \mathcal{F}^b_{\nu\rho} \mathcal{F}^c_{\rho\mu} \qquad \qquad \zeta Z_{\zeta} = \zeta \left(1 + \frac{3g^2 N_c}{4\pi^2 \varepsilon} \right) - \frac{\lambda^2 N_f}{4\pi^2 \varepsilon} u \equiv \frac{\zeta}{\lambda^2} \zeta = \frac{11\lambda^2}{5g_*^2} = \frac{165}{2} \frac{1}{\Delta} \left(\frac{\lambda^2 N_c}{16\pi^2} \right)$$

Lowest level: Pauli term $\beta_{\lambda} = \frac{g^2 \lambda (N_c^2 - 5)}{16\pi^2 N_c} \sim \frac{2}{75} \lambda \Delta$

$$\mathcal{L}_{\text{Pauli}} = \kappa \lambda Z_{\lambda} \mathcal{F}^{a}_{\mu\nu} \overline{\Psi^{I}_{i}} T^{a}_{ij} \sigma_{\mu\nu} \Psi^{I}_{j}, \qquad \lambda(\Lambda) = \lambda(\mu) \left(\frac{\Lambda}{\mu}\right)^{2\Delta/75}.$$

Second level: Fcube plus four-fermion terms

$$\begin{split} \mathcal{L}_{F^3} &= \frac{\kappa^2 \mu^{-\varepsilon}}{6!} \zeta Z_{\zeta} \ f^{abc} \mathcal{F}^a_{\mu\nu} \mathcal{F}^b_{\nu\rho} \mathcal{F}^c_{\rho\mu} \\ \zeta &= \zeta \left(1 + \frac{3g^2 N_c}{4\pi^2 \varepsilon} \right) - \frac{\lambda^2 N_f}{4\pi^2 \varepsilon} \\ u &\equiv \frac{\zeta}{\lambda^2} \\ \zeta &= \frac{11\lambda^2}{5g_*^2} = \frac{165}{2} \frac{1}{\Delta} \left(\frac{\lambda^2 N_c}{16\pi^2} \right) \\ S &= (\overline{\Psi}^I_i \Psi^I_i)^2, \qquad P = (\overline{\Psi}^I_i \gamma_5 \Psi^I_i)^2, \qquad V = (\overline{\Psi}^I_i \gamma_\mu \Psi^I_i)^2, \qquad A = (\overline{\Psi}^I_i \gamma_5 \gamma_\mu \Psi^I_i)^2, \\ T &= (\overline{\Psi}^I_i \sigma_{\mu\nu} \Psi^I_i)^2, \qquad S' = (\overline{\Psi}^I_i \Psi^I_j) (\overline{\Psi}^I_j \Psi^I_i), \qquad P' = (\overline{\Psi}^I_i \gamma_5 \Psi^I_j) (\overline{\Psi}^I_j \gamma_5 \Psi^I_i), \end{split}$$

$$\mathbf{V}' = (\overline{\Psi}_i^I \gamma_\mu \Psi_i^I)^2, \qquad \mathbf{A}' = (\overline{\Psi}_i^I \gamma_5 \gamma_\mu \Psi_i^I)^2, \qquad \mathbf{T}' = (\overline{\Psi}_i^I \sigma_{\mu\nu} \Psi_j^I) (\overline{\Psi}_j^I \sigma_{\mu\nu} \Psi_i^I).$$

• It is possible to construct finite nonrenormalizable theories algorithmically

Conclusions

- It is possible to construct finite nonrenormalizable theories algorithmically
- What is necessary for the construction to work?
 One finite operator with dimensionality greater than four

Conclusions

- It is possible to construct finite nonrenormalizable theories algorithmically
- What is necessary for the construction to work?
 One finite operator with dimensionality greater than four
- When does the construction not work? When there exist infinitely many finite non-protected operators