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Monopoles and  Vortices

• Magnetic Monopols in QFT (Dirac 1931)

• Vortex in superconductor (Abrikosov, 1957)

• Vortices in rel. QFT (Nielsen-Olesen, 1973)

• Monopoles in QFT (‘t Hooft, Polyakov, 1974)

• Confinement in QCD (‘t Hooft, Mandelstam 1980)

• Nonabelian vortices (2003-), monopoles, walls   

• Quantum mech. non-Abelian monopoles  ( 1994 - 
2006 )          



The strategy:  a two-front attack

• Fully quantum mechanical analysis.  Possible in N=2 susy SU, SO, 
USp theories with N  quarks;   

f

General ideas versus 
Concrete models: softly broken N=2 supersymmetric  SU, SO, USp models

☛ Light monopoles in  r  of  various SU(r) 
magnetic gauge groups

☛ Class of nontrivial superconformal vacua   (QCD?)

•  Semi-classical monopoles:  homotopy-map, RG, exact 
     symmetries;   monopole transformations from vortex moduli             

Seiberg’s duality ; Olive-Montonen duality in N=4 susy
Cachazo-Douglas-Seiberg-Witten / Dijkgraaf-Vafa   ‘03

How



Nonabelian monopoles

H nonabelian

 2 m· e ∈ Z

“Monopoles are multiplets of H  (GNOW)”

cfr.

~

➘

<Φ> = v = h · T

(Dirac)The normalization of the generators can be chosen [4] so that the metric of the

root vector space is10

gij =
∑

roots

αiαj = δij. (A.4)

The Higgs field vacuum expectation value (VEV) is taken to be of the form

φ0 = h · T, (A.5)

where h = (h1, . . . , hrank(G)) is a constant vector representing the VEV. The root

vectors orthogonal to h belong to the unbroken subgroup H .

The monopole solutions are constructed from various SU(2) subgroups of G that

do not commute with H ,

S1 =
1

√
2α2

(Eα + E−α); S2 = −
i

√
2α2

(Eα − E−α); S3 = α∗ · T, (A.6)

where α is a root vector associated with a pair of broken generators E±α. α∗ is a

dual root vector defined by

α∗ ≡
α

α · α
. (A.7)

The symmetry breaking (A.1) induces the Higgs mechanism in such an SU(2) sub-

group, SU(2) → U(1). By embedding the known ’t Hooft-Polyakov monopole

[34, 27] lying in this subgroup and adding a constant term to φ so that it behaves

correctly asymptotically, one easily constructs a solution of the equation of motion

[6, 19]:

Ai(r) = Aa
i (r, h · α) Sa; φ(r) = χa(r, h · α) Sa + [ h − (h · α) α∗] · T, (A.8)

where

Aa
i (r) = εaij

rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α (A.9)

is the standard ’t Hooft-Polyakov-BPS solution. Note that φ(r = (0, 0, ∞)) = φ0.

10In the Cartan basis the Lie algebra of the group G takes the form

[Hi, Hk] = 0, (i, k = 1, 2, . . . , r); [Hi, Eα] = αi Eα; [Eα, E−α] = αi Hi;

(A.2)

[Eα, Eβ] = Nαβ Eα+β (α + β &= 0). (A.3)

αi = (α1, α2, . . .) are the root vectors.
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significantly relaxed in cases in which the unbroken group is smaller. In this way one

finds that the only real restriction is that the number of flavors be at least equal to

2r if the monopole transforms in the fundamental representation of SU(r). (See

e.g., Eq.(3.2).)

3 Quantum Nonabelian Monopoles

The above example of the SU(N + 1) model nicely illustrates the fact that

a semiclassical treatment alone is not enough to ensure that the set of apparently

degenerate monopoles associated with the symmetry breaking G
〈φ〉#=0−→ H are truly

nonabelian. The reason is that the “unbroken” gauge group H may well dynamically

break down to an abelian subgroup. If this occurs, one has only an approximately

degenerate set of monopoles whose masses differ by e.g., O( Λ2

〈φ〉). For this reason, the

very concept of nonabelian monopoles is never really semi-classical, in sharp contrast

to the case of abelian monopoles. Only if the “unbroken” gauge group H is not further

broken dynamically do the unconfined (topologically stable) nonabelian monopoles

and dual gauge bosons appear in the quantum theory.

Another subtlety is that it is in general not justified to study the system G
〈φ〉#=0−→ H

with a nonabelian subgroup H as a limiting situation of a maximal breaking, -

G
〈φ〉#=0−→ U(1)R, where R is the rank of the group G, by letting some of the eigen-

values of 〈φ〉 to coincide, as is sometimes done in the literature. To do so would

introduce fictitious degrees of freedom corresponding to massless, infinitely extended

“solitons”. In this limit all fields tend to constant values and so in fact these are not

solitons at all. Indeed, in the case G = SU(N), such “massless monopoles” do not

represent any topological invariant as the fundamental group of any restored SU(N)

is trivial.2

It is hardly possible to overemphasize the importance of the fact [4, 6, 19] that

nonabelian monopoles, if they exist quantum mechanically, transform as irreducible

multiplets of the dual group H̃ , not under H itself. Monopoles transforming under

2This is analogous to what would happen to the ’t Hooft - Polyakov monopole of the spontaneously

broken SU(2)
v−→U(1) theory, if one were to apply the semi-classical formulae näıvely in the limit

v → 0. We believe that this fact, together with the fact that the magnetic monopoles are multiplets

of the dual of H (see the following paragraph), are responsible for some difficulties found in such an

approach [10].
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is the standard ’t Hooft-Polyakov-BPS solution. Note that φ(r = (0, 0, ∞)) = φ0.

The mass of a BPS monopole is then given by

M =

∫
dS · Tr φ B, B =

ri(S · r)

r4
. (A.10)

10In the Cartan basis the Lie algebra of the group G takes the form
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1

H= group generated by 
~ H H

U(N) U(N)

SU(N) SU(N)/Z

SO(2N) SO(2N)

SO(2N+1) USp(2N)

~

N

For the cases SO(N +2) → SO(N)×U(1) and USp(2N +2) → USp(2N)×
U(1), where TrHi Hj = C δij, one finds

M =
4π C h · α∗

g
=

4 π v

g
, (A.14)

while for SO(2N) → SU(N) × U(1), SO(2N + 1) → SU(N) × U(1), and

USp(2N) → SU(N) × U(1), the mass is

M =
8π C h · α∗

g
=

8 π v

g
. (A.15)

In order to get the U(1) magnetic charge11 (the last column of Table 3), we first

divide by an appropriate normalization factor in the mass formula Eq.(A.10)

Fm =

∫
dS ·

Tr φ B

Nφ

=

∫
dS · B(0), B =

ri(S · r)

r4
, (A.16)

as was done in Eq.(2.14). The result, which is equal to 4πgm by definition, gives the

magnetic charge. The latter must then be expressed as a function of the minimum

U(1) electric charge present in the given theory, which can be easily found from the

normalized (such that Tr T (a) T (a) = 1
2
) form of the relevant U(1) generator.

For example, in the case of the symmetry breaking, SO(2N) → U(N), the

adjoint VEV is of the form, φ =
√

4N v T (0), where T (0) is a 2N × 2N block-

diagonal matrix with N nonzero submatrices i√
4N

(
0 1

−1 0

)
. Dividing the mass

(A.15) by
√

N v and identifying the flux with 4πgm one gets gm = 2√
N g

. Finally,

in terms of the minimum electric charge of the theory e0 = g√
4N

( which follows from

the normalized form of T (0) above) one finds

gm =
2

√
N g

=
2

N
·

1

2 e0

. (A.17)

The calculation is similar in other cases.

The asymptotic gauge field can be written as

Fij = εijk

rk

r3
(β · T), 2 β · α ∈ Z (A.18)

11In this calculation it is necessary to use the generators normalized as Tr T (a) T (b) = 1
2
δab, such

that B = B(0) T (0) + . . . .
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Goddard-Nuyts-Olive,E.Weinberg, Bais, Schroer, ....

Review





Difficulties

➀ Topological obstructions (Abouelsaad et.al)

e.g., In the system SU(3) ➝ SU(2)×U(1),
∄ monopoles ~ (2, 1   )  ∗

“No colored dyons exist” (Abouelsaood, Coleman, ...)

② Non-normalizable gauge zero modes:   

 Monopoles not multiplets of H 

The real issue: 
how do they transform under  H ?~

cfr.
Jackiw-Rebbi

Flavor Q.N. of monopoles
via 

fermion zeromodes

N.B. :  H and H relatively nonlocal
~

Φ = diag(v,v,-2v)

↵

N=1, 2,  or  ∞ ?  

 (Weinberg, Coleman, Nelson, Dorey...)



General considerations     G→H

- H nonabelian ➙ Dynamics

- Very concept of the dual group to be understood

  H can break itself dynamically  
(e.g., in pure N=2 YM, all monopoles are Abelian )

- “a H multiplet”  well defined if H weakly coupled (or conformally inv) 

- Duality ➙ H strongly coupled (tough!)  
  N=2 SU(N) with N  quarks:   ➞  “r” vacua  with

     Monopoles in r  of SU(r) !!!           r < N  /2

         SU(3) ➝ SU(2)×U(1), ∃ monopoles ~ (2  , 1  )   do exist

- Phase: study H in confinement phase: need H in Higgs phase     

           ⇒ 

~ ~

∗∗

~

f

f

General
ideas



Study:

Abstract

It is argued that the dual transformation of non-abelian monopoles
occurring in a system with gauge symmetry breaking G −→ H is to
be defined by setting the low-energy H system in Higgs phase, so that
the dual system is in confinement phase. The transformation law of the
monopoles follows from that of monopole-vortex mixed configurations in
the system (with a large hierarchy of scales)

G
v1−→ H

v2−→ ∅,

under an unbroken, exact color-flavor diagonal symmetry HC+F ∼ H̃ .
The transformation properties of the regular monopoles (π2(G/H)) fol-
low from those among the nonabelian vortices (π1(H)) studied recently,
through the isomorphism π1(G) ∼ π1(H)/π2(G/H). Our results,
obtained in the semiclassical regime (at v1 % v2 % Λ) of softly-broken
N = 2 supersymmetric SU(N) and SO(N) theories, are consistent
with the fully quantum-mechanical low-energy effective action descrip-
tion (at v1, v2 ∼ Λ), available in these theories. However, our argument,
based on the homotopy-map-stability argument on solitons and on exact
symmetries, is believed to be more generally valid.
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- Flavor symmetry essential:
         H      necessary not to break the degeneracy;
         H      ⇔ H dual       

        H  does not grow strong in IR 

- High-energy system (v ≈ 0) has regular monopoles if π (G/H) ≠∅

- Transformation properties under H        from
those of nonabelian vortices (Eto et.al., ASY, HT, ‘06)  

- Low-energy system (v ≈ ∞) has vortices if π (H) ≠ ∅

- v    as an infrared cut-off

[14]. Actually, the latter can be interpreted as the GNOW monopoles becoming light due to the
dynamics, at least in SU(N) theories [15]. For SO(N) or in USp(2N) theories the relation
between Seiberg’s duals and GNOW monopoles are less clear [15]. For instructive discussions on
the relation between Seiberg’s duals and semiclassical monopoles in a class of N = 1, SO(N)
models with matter fields in vector and spinor representations, see Strassler [16].

Dynamics of the system is thus a crucial ingredient: if the dual group were in Higgs phase,
the multiplet structure among the monopoles would get lost, generally. Therefore one must study
the dual (H̃) system in confinement phase.2 But then, according to the standard electromagnetic
duality argument, one must analyse the electric system in Higgs phase. The monopoles will
appear confined by the confining strings which are nothing but the vortices in the H system in
Higgs phase.

We are thus led to study the system with a hierarchical symmetry breaking,

G
〈φ1〉#=0−→ H

〈φ2〉#=0−→ ∅, (1.7)

where

|〈φ1〉| & |〈φ2〉|, (1.8)

instead of the original system (1.1). The smaller VEV breaks H completely. Also, in order for
the degeneracy among the monopoles not to be broken by the breaking at the scale |〈φ2〉|, we
assume that some global color-flavor diagnonal group

HC+F ⊂ Hcolor ⊗ GF (1.9)

remains unbroken.

It is hardly possible to emphasize the importance of the role of the massless flavors too much.
This manifests in several different aspects.

(i) In order that H must be non-asymptotically free, there must be sufficient number of massless
flavors: otherwise, H interactions would become strong at low energies and H group can
break itself dynamically;

(ii) The physics of the r vacua [9, 11] indeed shows that the non-abelian dual group SU(r)
appear only for r ≤ Nf

2
. This limit can be understood from the renormalization group: in

order for a nontrivial r vacuum to exist, there must be at least 2 r massless flavors in the
fundamental theory;

(iii) Non-abelian vortices [17, 18], which as we shall see are closely related to the concept of non-
abelian monopoles, require a flavor group. The non-abelian flux moduli arise as a result
of an exact, unbroken color-flavor diagonal symmetry of the system, broken by individual
soliton vortex.

The idea that the dual group transformations among the monopoles at the end of the vortices
follow from those among the vortices (monopole-vortex flux matching, etc.), has been discussed

2The non-abelian monopoles in the Coulomb phase suffer from the difficulties already discussed.
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Figure 1: A pictorial representation of the exact homotopy sequence, (3.1), with the leftmost figure
corresponding to π2(G/H).

taken into account, having mass large but not infinite (Fig. 2). The low-energy vortices become
unstable also through heavy monopole pair productions which break the vortices in the middle
(albeit with small, tunneling rates [40]), which is really the same thing. Note that, even if the
effect of such string breaking is neglected, a monopole-vortex-antimonopole configuration is not
topologically stable anyway: its energy would become smaller if the string becomes shorter (so
such a composite, generally, will get shorter and shorter and eventually disappear).

However, this does not mean that such a monopole-vortex-antimonopole configuration cannot
be dynamically stabilized, or that they are not relevant as physical configurations. A rotation
can stabilize easily such a monopole-vortex-antimonopole configuration dynamically. After all,
we believe that the real-world mesons are quark-string-antiquark bound states of this sort, the
endpoints rotating almost with a speed of light! An excited meson can and indeed do decay
through a quark pair production into states made of two lighter mesons. Only the lightest mesons
are truly stable. The same occurs with our monopole-vortex-antimonopole configurations. The
lightest such systems, after the rotation modes are appropriately quantized, are truly stable
bound states of solitons, even though they cannot be simply described as static, semiclassical
configurations.

Our model is thus a reasonably faithful (dual) model of the quark confinement in QCD.

It is crucial in our argument that the monopoles of high-energy theory and the vortices of
low-energy theory are both BPS only approximately; in other words, they are almost BPS but
not exactly.6 They are unstable in the full theory. But the fact that there exists a limit (of a
large ratio of the mass scales, v1

v2
→ ∞) in which these solitons become exactly BPS and stable,

means that the magnetic flux through the surface of a small sphere surrounding the monopole
and the vortex magnetic flux through a plane perpendicular to the vortex axis, must match
exactly. These questions (the flux matching) have been discussed extensively already in [19].

Our argument, applied to the simplest case, G = SO(3), and H = U(1), is precisely
the one adopted by ’t Hooft [1] in his pioneering paper, to argue that there must be a regular
monopole of charge two (with respect to the Dirac’s minimum unit): as the vortex of winding
number k = 2 must be trivial in the full theory (with π1(SO(3)) = Z2), such a vortex must
end at a regular monopole. What is new here, as compared to the case discussed by ’t Hooft [1] is
that now the unbroken group H is non-abelian and that the low-energy vortices carry continuous,

6The importance of non-BPS soliton configurations have also been emphasized by Strassler [16].
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Homotopy exact sequence

The gauge field equations take a slightly more complicated form than in the U(N) model
(2.1):

∂z (Ω−1∂z̄ Ω) = −
g2

N

2
Tr ( ta Ω−1 q q†) ta −

e2

4N
Tr ( Ω−1q q† − 1), Ω = S S†.(2.33)

The last equation reduces to the master equation Eq. (2.10) in the U(N) limit, gN = e.

The advantage of the moduli matrix formalism is that all the moduli parameters appear in
the holomorphic, moduli matrix H0(z). Especially, the transformation property of the vortices
under the color-flavor diagonal group can be studied by studying the behavior of the moduli
matrix.

3 Topological stability, vortex-monopole complex and con-
finement

The fact that there must be a continuous set of monopoles, which transform under the color-flavor
SU(N) group follows from the following exact homotopy sequence

· · · → π2(G) → π2(G/H) → π1(H) → π1(G) → · · · (3.1)

where π2(G) = π1(G) = ∅, in the system under consideration, G = SU(N + 1), H =
SU(N)×U(1)

ZN
∼ U(N). (Fig. 1). The nontrivial configuration of the scalar field can be inter-

preted as representing π2(G/H) while the gauge field consfiguration can be classified according
to π1(H) [42]. It follows that

π2

(
SU(N + 1)

U(N)

)
= π2(CP N) ∼ π1(U(N)) = Z : (3.2)

each nontrivial element of π1(U(N)) is associated with a nontrivial element of π2(
SU(N+1)

U(N)
).

Recalling that the latter represents the topological classification of gauge and scalar fields, this
result is consistent as the theory does not admit Dirac monopoles: all monopoles are regular ’t
Hooft-Polyakov monopoles.

However, there is something of a puzzle: when the small VEV’s are taken into account, which
break the “unbroken” gauge group completely, these monopoles must disappear somehow. A
related puzzle is this: the low-energy theory develops vortices since H is completely broken. The
vortex flux is quantized by (in our case, with H = SU(N)×U(1)

ZN
)

π1(H) = Z. (3.3)

Again, when the massive monopoles associated with the breaking G → H are taken into
account, ı.e., in the full theory, the vortices visible and stable in the low-energy approximation
must disappear, as π1(G) = ∅.

Actually, these two apparent puzzles are the two faces of a medal. The solution is that the
massive monopoles are confined by the vortices and disappear from the spectrum; on the other
hand, the vortices of the low-energy theory end at the heavy monopoles once the latter are
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- Regular monopoles ⇔ Kernel of the map π (H) ⇒ π (G)          Coleman

   e.g.,  G=SU(N), USp(2N): π =∅ ⇒ No Dirac monopoles     (Wu-Yang)

  G=SO(N): π =Z  , Z  monopoles;    G=SU(N)/Z  :  Z   monopoles; 

- π (G) = ∅  ⇒  No regular monopoles:  confined by vortices

Abstract

It is argued that the dual transformation of non-abelian monopoles
occurring in a system with gauge symmetry breaking G −→ H is to
be defined by setting the low-energy H system in Higgs phase, so that
the dual system is in confinement phase. The transformation law of the
monopoles follows from that of monopole-vortex mixed configurations in
the system (with a large hierarchy of scales)

G
v1−→ H

v2−→ ∅,

under an unbroken, exact color-flavor diagonal symmetry HC+F ∼ H̃ .
The transformation properties of the regular monopoles (π2(G/H)) fol-
low from those among the nonabelian vortices (π1(H)) studied recently,
through the isomorphism π1(G) ∼ π1(H)/π2(G/H). Our results,
obtained in the semiclassical regime (at v1 % v2 % Λ) of softly-broken
N = 2 supersymmetric SU(N) and SO(N) theories, are consistent
with the fully quantum-mechanical low-energy effective action descrip-
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symmetries, is believed to be more generally valid.
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- If π (G) = ∅  ⇒  No vortices: they “end” at reg monopoles

1 1

NN1 2 2

1

2

1
‘t Hooft

SO(3)/U(1)- If π (G) = Z  ⇒  No k=2 vortices: they “end” at reg monopoles!
1 2

k=1 vortices are there: they would confine Dirac monopoles

Apply to:

{
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Figure 2: The nontrivial vortex moduli implies a corresponding moduli of monopoles.

non-abelian flux moduli. The monopoles appearing as the endpoints of such vortices must carry
the same continuous moduli (Fig. 2). This is how we define the non-abelian monopoles and their
dual transformations, as discussed below more explicitly.

4 Dual gauge transformation among the monopoles

The concepts such as the low-energy BPS vortices or the high-energy BPS monopole solutions, are
thus approximate only: their explicit forms are valid only in the lowest-order approximation, in
the respective kinematical regions. Nevertheless, there is a property of the system which is exact
and does not depend on any approximation: the full system has an exact, global SU(N)C+F

symmetry, which is neither broken by the interactions nor by both sets of VEVs, v1 and v2.
This symmetry is broken by individual soliton vortex, endowing the latter with a non-abelian
orientational moduli, analogous to the translational zeromodes of a kink. Note that the vortex
breaks the color-flavor symmetry as

SU(N)C+F → SU(N − 1) × U(1), (4.1)

leading to the moduli space of the minimum vortices which is

M $ CP N−1 =
SU(N)

SU(N − 1) × U(1)
. (4.2)

The fact that this moduli coincides with the moduli of the quantum states of an N -state quantum
mechanical system, is a first hint that the monopoles appearing at the endpoint of a vortex,
transform as a fundamental multiplet N of a group SU(N).
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SU(N+1) ⇒ U(N) ⇒ ∅ 

◆ Unbroken exact  SU(N)        ⊂
    SU(N)   ×  SU(N)

◆ Individual vortex breaks

C F

C+F

SU(N)       /  SU(N-1) × U(1)  
C+F

◆k=1 vortices transform as N

⇒  Monopoles in SU(N+1)/U(N)  

 ~  N  of  SU(N)        ≡   SU(N)    ✔    
~

◆ r < N:   k=2 vortices  in  r   ⇒   Monopoles ~ r  of SU(r)      ✔

SO(2N+1) ⇒ U(r) ×U(1)     ⇒  ∅ 
N-r

◆ r = N:   SO(5) ⇒ U(2) ⇒ ∅     :  k=2 vortices  are in  3 + 1 of   SU(2)  ⇒
     Monopoles (E.Weinberg) ~ 3 or 1  of SU(2)!  

Higher-winding 
nonabelian

vorices  
Eto et. al. 06
ASY, HT 06

C+F

✔   = consistent with the  full quantum theory 

Explicit form of semiclassical monopoles not used 
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♢ M-V-M  configurations not topologically stable
−

{ Vortex breaks via M M pair production   (i)   
Vortex become shorter and M and M annihilate    (ii)

−
−

(ii)  Can be stabilized dynamically (rotation)
(i)   Resonances: only the lowest composite stable

but {

q-S-q  mesons  are analogous  (endpoints rotating with the 
light velocity: only the lightest mesons are stable) composite

−

♢ Monopoles (G/H) and vortices (H) both almost  BPS.  

    ∃ Limit in which they become exactly BPS (flux matching)

Remarks:

cfr.   QCD 



 Softly broken N=2 supersymmetric SU, SO, USp
G ⇒ H ⇒  ∅

G=SU(N+1);  H=U(N) 

  

understood: this will provide us with a nontrivial check of our results. Another motivation is
purely of convenience: it gives a definite potential with desired properties.3

The underlying theory is thus

L =
1

8π
Im Scl

[∫
d4θ Φ†eV Φ +

∫
d2θ

1

2
WW

]
+ L(quarks) +

∫
d2θ µ Tr Φ2; (2.13)

L(quarks) =
∑

i

[∫
d4θ {Q†

ie
V Qi + Q̃ie

−V Q̃†
i} +

∫
d2θ {

√
2Q̃iΦQi + mi Q̃i Qi}

]
(2.14)

where m is the bare mass of the quarks and we have defined the complex coupling constant

Scl ≡
θ0

π
+

8πi

g2
0

. (2.15)

We also added the parameter µ, the mass of the adjoint chiral multiplet, which breaks the
supersymmetry to N = 1. The bosonic sector of this model is described, after elimination of
the auxiliary fields, by

L =
1

4g2
F 2

µν +
1

g2
|DµΦ|2 + |DµQ|2 +

∣∣∣Dµ
¯̃Q
∣∣∣
2

− V1 − V2, (2.16)

where

V1 =
1

8

∑

A

(
tA
ij [

1

g2
(−2) [Φ†, Φ]ji + Q†

jQi − Q̃jQ̃
†
i]

2

)2

; (2.17)

V2 = g2|µ ΦA +
√

2 Q̃ tAQ|2 + Q̃ [m +
√

2Φ] [m +
√

2Φ]† Q̃†

+ Q† [m +
√

2Φ]† [m +
√

2Φ] Q. (2.18)

In the construction of the approximate monopole and vortex solutions we shall consider only the
VEVs and fluctuations around them which satisfy

[Φ†, Φ] = 0, Qi = Q̃†
i, (2.19)

and hence the D-term potential V1 can be set identically to zero throughout.

In order to keep the hierarchy of the gauge symmetry breaking scales, (1.8), we choose the
masses such that

m1 = . . . = mNf = m, (2.20)

m $ µ $ Λ. (2.21)

3Recent developments [32, 33] allow us actually to consider systems of this sort within a much wider class of
N = 1 supersymmetric models, whose infrared properties are very much under control. We stick ourselves to
the standard N = 2 SQCD, however, for concreteness.
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Bosonic Lagrangean

Although the theory described by the above Lagrangian has many degenerate vacua, we are
interested in the vacuum where (see [11] for the detail)

〈Φ〉 = −
1

√
2





m 0 0 0

0
. . .

...
...

0 . . . m 0
0 . . . 0 −N m




; (2.22)

Q = Q̃† =





d 0 0 0 0 . . .

0
. . . 0

...
... . . .

0 0 d 0 0 . . .
0 . . . 0 −N d 0 . . .




, d =

√
(N + 1) µ m % m. (2.23)

This is a particular case of the so-called r vacuum, with r = N . Although such a vacuum
certainly exists classically, the existence of the quantum r = N vacuum in this theory requires
Nf ≥ 2 N , which we shall assume.4

To start with, ignore the smaller squark VEV, (2.23). As π2(G/H) ∼ π1(H) = π1(U(1)) =
Z, the symmetry breaking (2.22) gives rise to regular magnetic monopoles with mass of order of
O(v1

g
), whose continuous transformation property is our main concern here. The semiclassical

formulas for their mass and fluxes are well known [4, 34] and will not be repeated here.

2.3 Low-energy approximation

At scales much lower than v1 = m but still neglecting the smaller squark VEV v2 = d =√
(N + 1) µ m % v1, the theory reduces to an SU(N) × U(1) gauge theory with Nf light

quarks qi, q̃i (the first N components of the original quark multiplets Qi, Q̃i). By integrating
out the massive fields, the effective Lagrangian valid between the two mass scales has the form,

L =
1

4g2
N

(F a
µν)

2 +
1

4g2
1

(F 0
µν)

2 +
1

g2
N

|Dµφa|2 +
1

g2
1

|Dµφ0|2 + |Dµq|2 +
∣∣Dµ

¯̃q
∣∣2

− g2
1

∣∣∣∣ −
µ m
√

2
+

1
√

N(N + 1)
q̃ q

∣∣∣∣
2

− g2
N|

√
2 q̃ taq |2 + . . . (2.24)

where a = 1, 2, . . . N2 − 1 labels the SU(N) generators, ta; the index 0 refers to the U(1)
generator t0 = 1√

2N(N+1)
diag(1, . . . , 1, −N). We have taken into account the fact that the

SU(N) and U(1) coupling constants (gN and g1) get renormalized differently towards the
infrared.

4This might appear to be a rather tight condition as the original theory loses asymptotic freedom for Nf ≥
2 N + 2. This is not so. An analogous discussion can be made by starting from a larger gauge group and
by considering the breaking SU(M) → SU(N) × U(1)M−N . In this case the condition for the quantum
non-abelian vacuum is 2 M ≥ Nf ≥ 2 N , which is a much looser condition. Also, although the corresponding
U(N) theory (2.1) with such a number of flavor has semilocal strings [35, 27, 23], these moduli are not directly
related to the derivation of the dual gauge symmetry, which is our interest in this paper. We shall come back to
these questions elsewhere.
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v  = m           
v   =  √μm
1

2

m ≫ μ ≫ Λ        

semi-classical

☆

SU(N+1) ⇒ U(N) 

Concrete
model



Low-energy U(N) theory

The adjoint scalars are fixed to its VEV, Eq. (2.22), with small fluctuations around it,

Φ = 〈Φ〉(1 + 〈Φ〉−1 Φ̃), |Φ̃| # m. (2.25)

In the consideration of the vortices of the low-energy theory, they will be in fact replaced by
the constant VEV. The presence of the small terms Eq. (2.25), however, makes the low-energy
vortices not strictly BPS (and this will be important in the consideration of their stability below).5

The quark fields are replaced, consistently with (2.19), as

q̃ ≡ q†, q →
1

√
2

q, (2.26)

where the second replacement brings back the kinetic term to the standard form.

We further replace the singlet coupling constant and the U(1) gauge field as

e ≡
g1√

2N(N + 1)
; Ãµ ≡

Aµ√
2N(N + 1)

, φ̃0 ≡
φ0

√
2N(N + 1)

. (2.27)

The net effect is

L =
1

4g2
N

(F a
µν)

2 +
1

4e2
(F̃µν)

2 + |Dµq|2 −
e2

2
| q† q − c 1 |2 −

1

2
g2

N | q† taq |2, (2.28)

c = −

√
N(N + 1) µ m

2
. (2.29)

Neglecting the small terms left implicit, this is identical to the U(N) model Eq. (2.1), except for
the fact that e (= gN here. The transformation property of the vortices can be determined from
the moduli matrix, as was done in [20]. Indeed, the system possesses BPS saturated vortices
described by the linearized equations

(D1 + iD2) q = 0, (2.30)

F (0)
12 +

e2

2

(
c 1N − q q†) = 0; F (a)

12 +
g2

N

2
q†

i ta qi = 0. (2.31)

The matter equation can be solved exactly as in [25, 29, 27] (z = x1 + ix2) by setting

q = S−1(z, z̄) H0(z), A1 + i A2 = −2 i S−1(z, z̄) ∂̄zS(z, z̄), (2.32)

where S is an N × N invertible matrix over whole of the z plane, and H0 is the moduli matrix,
holomorphic in z.

5In the terminology used in Davis et. al. [36] in the discussion of the abelian vortices in supersymmetric
models, our model corresponds to an F model while the models of [21, 23, 29] correspond to a D model. In the
approximation of replacing Φ with a constant, the two models are equivalent: they are related by an SUR(2)
transformation [38, 39].
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We further replace the singlet coupling constant and the U(1) gauge field as

e ≡
g1√

2N(N + 1)
; Ãµ ≡

Aµ√
2N(N + 1)

, φ̃0 ≡
φ0

√
2N(N + 1)

. (2.27)

The net effect is

L =
1

4g2
N

(F a
µν)

2 +
1

4e2
(F̃µν)

2 + |Dµq|2 −
e2

2
| q† q − c 1 |2 −

1

2
g2

N | q† taq |2, (2.28)

c = −

√
N(N + 1) µ m

2
. (2.29)

Neglecting the small terms left implicit, this is identical to the U(N) model Eq. (2.1), except for
the fact that e (= gN here. The transformation property of the vortices can be determined from
the moduli matrix, as was done in [20]. Indeed, the system possesses BPS saturated vortices
described by the linearized equations

(D1 + iD2) q = 0, (2.30)

F (0)
12 +

e2

2

(
c 1N − q q†) = 0; F (a)

12 +
g2

N

2
q†

i ta qi = 0. (2.31)

The matter equation can be solved exactly as in [25, 29, 27] (z = x1 + ix2) by setting

q = S−1(z, z̄) H0(z), A1 + i A2 = −2 i S−1(z, z̄) ∂̄zS(z, z̄), (2.32)

where S is an N × N invertible matrix over whole of the z plane, and H0 is the moduli matrix,
holomorphic in z.

5In the terminology used in Davis et. al. [36] in the discussion of the abelian vortices in supersymmetric
models, our model corresponds to an F model while the models of [21, 23, 29] correspond to a D model. In the
approximation of replacing Φ with a constant, the two models are equivalent: they are related by an SUR(2)
transformation [38, 39].
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Nonabelian vortex
 Bogomolnyi equations

(HT, ABEKY  ‘03)

Solution

S is an invertible matrix

-  holomorphic in   z = x + i y
-  Det H   ~    z     :      k = vortex winding number

-  H   contains all the moduli parameters;
-  H   ⇒  Moduli space/ transformation of the vortices under G

-  H     defined up to  reparametrizations  H   ⇒   V(z)  H  ;     S ⇒ V S

The gauge field equations take a slightly more complicated form than in the U(N) model
(2.1):

∂z (Ω−1∂z̄ Ω) = −
g2

N

2
Tr ( ta Ω−1 q q†) ta −

e2

4N
Tr ( Ω−1q q† − 1), Ω = S S†.(2.33)

The last equation reduces to the master equation Eq. (2.10) in the U(N) limit, gN = e.

The advantage of the moduli matrix formalism is that all the moduli parameters appear in
the holomorphic, moduli matrix H0(z). Especially, the transformation property of the vortices
under the color-flavor diagonal group can be studied by studying the behavior of the moduli
matrix.

3 Topological stability, vortex-monopole complex and con-
finement

The fact that there must be a continuous set of monopoles, which transform under the color-flavor
SU(N) group follows from the following exact homotopy sequence

· · · → π2(G) → π2(G/H) → π1(H) → π1(G) → · · · (3.1)

where π2(G) = π1(G) = ∅, in the system under consideration, G = SU(N + 1), H =
SU(N)×U(1)

ZN
∼ U(N). (Fig. 1). The nontrivial configuration of the scalar field can be inter-

preted as representing π2(G/H) while the gauge field consfiguration can be classified according
to π1(H) [42]. It follows that

π2

(
SU(N + 1)

U(N)

)
= π2(CP N) ∼ π1(U(N)) = Z : (3.2)

each nontrivial element of π1(U(N)) is associated with a nontrivial element of π2(
SU(N+1)

U(N)
).

Recalling that the latter represents the topological classification of gauge and scalar fields, this
result is consistent as the theory does not admit Dirac monopoles: all monopoles are regular ’t
Hooft-Polyakov monopoles.

However, there is something of a puzzle: when the small VEV’s are taken into account, which
break the “unbroken” gauge group completely, these monopoles must disappear somehow. A
related puzzle is this: the low-energy theory develops vortices since H is completely broken. The
vortex flux is quantized by (in our case, with H = SU(N)×U(1)

ZN
)

π1(H) = Z. (3.3)

Again, when the massive monopoles associated with the breaking G → H are taken into
account, ı.e., in the full theory, the vortices visible and stable in the low-energy approximation
must disappear, as π1(G) = ∅.

Actually, these two apparent puzzles are the two faces of a medal. The solution is that the
massive monopoles are confined by the vortices and disappear from the spectrum; on the other
hand, the vortices of the low-energy theory end at the heavy monopoles once the latter are

9

k

Master equation

Eto, Nitta, Ohashi, 
Mizoguchi,  ... ,  Sakai   ’05, ’06 

C+F

0

0

0

0

0 0 0

H  (z)   :  moduli matrix 

Detailed study of k=2  (axially symmetric)  vortices of  U(N)  ⇒ ∅ theory

Auzzi et al.,  Hanany-Tong, Shifman-Yung,  Eto, Nitta, Ohashi, Mizoguchi,  ... ,  
Sakai   

The gauge field equations take a slightly more complicated form than in the U(N) model
(2.1):

∂z (Ω−1∂z̄ Ω) = −
g2

N

2
Tr ( ta Ω−1 H0 H†

0) ta −
e2

4N
Tr ( Ω−1H0 H†

0 − 1), Ω = S S†.

(2.33)

The last equation reduces to the master equation Eq. (2.10) in the U(N) limit, gN = e.

The advantage of the moduli matrix formalism is that all the moduli parameters appear in
the holomorphic, moduli matrix H0(z). Especially, the transformation property of the vortices
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result is consistent as the theory does not admit Dirac monopoles: all monopoles are regular ’t
Hooft-Polyakov monopoles.

However, there is something of a puzzle: when the small VEV’s are taken into account, which
break the “unbroken” gauge group completely, these monopoles must disappear somehow. A
related puzzle is this: the low-energy theory develops vortices since H is completely broken. The
vortex flux is quantized by (in our case, with H = SU(N)×U(1)

ZN
)

π1(H) = Z. (3.3)

Again, when the massive monopoles associated with the breaking G → H are taken into
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must disappear, as π1(G) = ∅.
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massive monopoles are confined by the vortices and disappear from the spectrum; on the other
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k=2 vortex moduli and transformations  

SU(2)

It can be shown that these are equivalent to Eqs. (3.3) by use of Eq. (3.5) and analogous relation
for the primed parameters. The coordinates in U (1,1) are also the orientational moduli. If we
take {b1, b′

2, z1, z2} as a set of independent moduli and substitute Eq. (3.5) and b2 = 1/b′
2 to

Eq. (3.2), then we obtain, for b1 b′
2 != 1

φ =
z2 − b1 b′

2z1

1 − b1 b′
2

, η =
z1 − z2

1 − b1 b′
2

b1, φ̃ =
z1 − b1 b′

2 z2

1 − b1 b′
2

, η̃ = −
z1 − z2

1 − b1 b′
2

b′
2. (3.7)

It can be seen that the representation Eq. (3.5) implies that U (0,2) and U (2,0) are suitable for
describing the situation when two orientational moduli are parallel or nearby. On the other hand,
Eq. (3.7) implies that U (1,1) is suitable to describe the situation when orientational moduli are
orthogonal or close to such a situation, while not adequate for describing a parallel set. Therefore,
the moduli space for two separated vortices are completely described by the positions and the
two orientational moduli b1, b2, (b′

1, b′
2): the moduli space for the composite vortices in this

case is given by [14, 15]

Mseparated
k=2,N=2 #

(
C × CP 1

)2
/S2, (3.8)

where S2 permutes the centers and orientations of the two vortices.

2) We now focus on coincident (co-axial) vortices (z1 = z2), with the moduli space denoted
by

M̃N=2,k=2 ≡ MN=2,k=2

∣∣
z1=z2

. (3.9)

As an overall translational moduli is trivial, we set z1 = z2 = 0 without loss of generality.
According to Eqs. (3.5) and Eq. (3.7), all points in the moduli space tend to the origin of U (1,1)

in the limit of z2 → z1, as long as b1 and b2 take different values. A more careful treatment
is needed in this case. In terms of the moduli matrix, the condition of coincidence is given by
det H0(z) = z2. We have

{α = 0, β = 0} ,
{

φ̃ = −φ, φ φ̃ − η η̃ = 0
}

and {α′ = 0, β′ = 0} , (3.10)

in U (2,0), U (1,1) and U (0,2), respectively. M̃N=2,k=2 is covered by the reduced patches Ũ (2,0),
Ũ (1,1) and Ũ (0,2), defined by the moduli matrices

H(2,0)
0 =

(
z2 0

−a′ z − b′ 1

)
, H(1,1)

0 =

(
z − φ −η
−η̃ z + φ

)
, H(0,2)

0 =

(
1 −a z − b
0 z2

)
.(3.11)

The following constraint exists among the coordinates in Ũ (1,1):

φ2 + η η̃ = 0. (3.12)

The transition functions between Ũ (0,2) and Ũ (1,1) are given by

a =
1

η̃
, b =

φ

η̃
= −

η

φ
, (3.13)

and those between Ũ (0,2) and Ũ (2,0) by

a = −
a′

b′2
, b =

1

b′
. (3.14)
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All the patches defined by Eq. (3.11) are parameterized by two independent complex parame-
ters. The reduced patches Ũ (2,0) and Ũ (0,2) are locally isomorphic to C2 with a, b or a′, b′ being
good coordinates. However, Ũ (1,1) suffers from the constraint Eq. (3.12) which gives the A1-type
(Z2) orbifold singularity at the origin and therefore Ũ (1,1) ! C2/Z2 locally (See Eq. (3.17), be-
low). Note that the moduli matrix H0(z) is proportional to the unit matrix at the singularity:
H0(z) = z 12. This implies that configurations of the physical fields (H and F12) are also
proportional to the unit matrix where the global symmetry SU(2)G+F is fully recovered at that
singularity. The full gauge symmetry is also recovered at the core of coincident vortices.

Remark: A brief comment on the orientational vectors. We could extract a part of moduli in the
moduli matrix as the orientational vector at z = 0, as in the case of separated vortices discussed above:

!φ ∼
(

1
b′

)
∼

(
η

−φ

)
∼

(
φ
η̃

)
∼

(
b
1

)
. (3.15)

From the identification !φ ∼ λ !φ (λ ∈ C∗) with the transition functions given in Eqs. (3.13) and
Eq. (3.14), we find that the orientational moduli again parameterizes CP 1. However, the orientational
vectors in Eq. (3.15) are not sufficient to pick up all the moduli parameters in the moduli matrix H0. For
instance a is lost in the Ũ(0,2) patch. It is even ill-defined at the singular point, as H

(1,1)
0 (z = 0) = 0.

(a, b) (a′, b′) (X, Y )

(a, b) = ** (−a′/b′2, 1/b′) (−1/Y 2, X/Y )

(a′, b′) = (−a/b2, 1/b) ** (1/X2, Y/X)

(X, Y ) = (±ib/
√

a, ±i1/
√

a) (±1/
√

a′, ±b′/
√

a′) **

Table 1: Transition functions between the three patches Ũ(2,0), Ũ(1,1) and Ũ(0,2).

To clarify the whole structure of the space M̃N=2,k=2, let us define new coordinates, solving
the constraint Eq. (3.12)

X Y ≡ −φ, X2 ≡ η, Y 2 ≡ −η̃. (3.16)

This clarifies the structure of the singularity at the origin. The coordinates (X, Y ) describe the
patch Ũ (1,1) correctly modulo Z2 identification

(X, Y ) ! (−X, −Y ). (3.17)

Using the transition functions Eq. (3.13) and Eq. (3.14), the three local domains are patched
together as in Table 1. In terms of the new coordinates (X, Y ), the orientational vector defined
at z = 0 is given by

!φ ∼
(

1
b′

)
∼

(
X
Y

)
∼

(
b
1

)
(3.18)

with !φ ∼ λ !φ (λ ∈ C∗). This equivalence relation recovers the transition functions between
b, b′ and (X, Y ) in the Table 1. These are coordinates on the CP 1 as was mentioned above.
But this CP 1 is only a subspace of the moduli space M̃N=2,k=2.
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The full space M̃N=2,k=2 can be made visible by attaching the remaining parameters a, a′

to CP 1. We arrange the moduli parameters in the three patches Ũ (2,0), Ũ (1,1) and Ũ (0,2) as




a′

1
b′



 ∼




1
X
Y



 ∼




−a
b
1



 , (3.19)

respectively, with the equivalence relation “∼”, defined by




φ0

φ1

φ2



 ∼




λ2 φ0

λ φ1

λ φ2



 with λ ∈ C∗. (3.20)

All the transition functions in Table 1 are then nicely reproduced. The equivalence relation
Eq. (3.20) defines a weighted complex projective space with the weights (2, 1, 1). We thus conclude
that the moduli space for the coincident (coaxial) k = 2 non-Abelian vortices is a weighted
projective space,

M̃N=2,k=2 $ WCP 2
(2,1,1). (3.21)

While the complex projective spaces with common weights, CP n, are smooth, weighted
projective spaces have singularities. In fact, we have shown that Ũ (1,1) $ C2/Z2, and it
has a conical singularity at the origin by (1, X, Y ) $ (1, −X, −Y ), whose existence was
first pointed out by ASY [16]. The origin of the conical singularity can be seen clearly from
the equivalence relation Eq. (3.20). As mentioned above the transition functions in Table 1
are reproduced via the equivalence relation Eq. (3.20). In fact, one finds that λ = 1

X
gives

(λ2, λ X, λ Y ) = (a′, 1, b′) and λ = 1
Y

gives (λ2, λ X, λ Y ) = (−a, b, 1). Note that λ in

the equivalence relation Eq. (3.20) is completely fixed in the patches Ũ (2,0) and Ũ (0,2) given in
Eq. (3.19). However, in the middle patch (1, X, Y ) we still have a freedom λ = −1 which
leaves the first component 1 untouched, but changes (1, X, Y ) → (1, −X, −Y ).

The relation between our result and that in [16] becomes clear by defining ξ2 ≡ φ0 (ξ =
±

√
φ0). Now the parameters (ξ, φ1, φ2) have a common weight λ, so they can be regarded as

the homogeneous coordinates of CP 2. But one must identify ξ $ −ξ clearly, and this leads to
the Z2 quotient (ξ, φ1, φ2) $ (ξ, −φ1, −φ2). Therefore our moduli space can also be rewritten
as

M̃N=2,k=2 $ CP 2/Z2 (3.22)

reproducing the result of [16]. Such a Z2 equivalence, however, does not change the topology
of MN=2,k=2: it remains CP 2 [14]. This is analogous to an (x, y) ∼ (−x, −y) equivalence
relation (with real x, y) introduced in one local coordinate system of CP 1 (a sphere), which
leads to a sphere with two conic singularities (a rugby ball, or a lemon) instead of the original
smooth sphere. 3 See Appendices A and B for more details.

3For instance, it is easily seen that MN=2,k=2 $ CP 2/Z2 remains simply connected. The higher homotopy
groups cannot change by a discrete fibration [23].
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projective space,
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(2,1,1). (3.21)
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projective spaces have singularities. In fact, we have shown that Ũ (1,1) $ C2/Z2, and it
has a conical singularity at the origin by (1, X, Y ) $ (1, −X, −Y ), whose existence was
first pointed out by ASY [16]. The origin of the conical singularity can be seen clearly from
the equivalence relation Eq. (3.20). As mentioned above the transition functions in Table 1
are reproduced via the equivalence relation Eq. (3.20). In fact, one finds that λ = 1

X
gives

(λ2, λ X, λ Y ) = (a′, 1, b′) and λ = 1
Y

gives (λ2, λ X, λ Y ) = (−a, b, 1). Note that λ in

the equivalence relation Eq. (3.20) is completely fixed in the patches Ũ (2,0) and Ũ (0,2) given in
Eq. (3.19). However, in the middle patch (1, X, Y ) we still have a freedom λ = −1 which
leaves the first component 1 untouched, but changes (1, X, Y ) → (1, −X, −Y ).

The relation between our result and that in [16] becomes clear by defining ξ2 ≡ φ0 (ξ =
±

√
φ0). Now the parameters (ξ, φ1, φ2) have a common weight λ, so they can be regarded as

the homogeneous coordinates of CP 2. But one must identify ξ $ −ξ clearly, and this leads to
the Z2 quotient (ξ, φ1, φ2) $ (ξ, −φ1, −φ2). Therefore our moduli space can also be rewritten
as

M̃N=2,k=2 $ CP 2/Z2 (3.22)

reproducing the result of [16]. Such a Z2 equivalence, however, does not change the topology
of MN=2,k=2: it remains CP 2 [14]. This is analogous to an (x, y) ∼ (−x, −y) equivalence
relation (with real x, y) introduced in one local coordinate system of CP 1 (a sphere), which
leads to a sphere with two conic singularities (a rugby ball, or a lemon) instead of the original
smooth sphere. 3 See Appendices A and B for more details.

3For instance, it is easily seen that MN=2,k=2 $ CP 2/Z2 remains simply connected. The higher homotopy
groups cannot change by a discrete fibration [23].
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Some SU(2) action sends the points in the patch Ũ (0,2) to where a better description is in
the patch Ũ (2,0), and vice versa. Compare Eq. (3.27) with u = 0, v = i, with Eq. (3.14). This
shows indeed that

Ũ (0,2) ∪ Ũ (2,0) " TCP 1. (3.29)

Next consider the patch Ũ (1,1) with

H(1,1)
0 =

(
z − φ −η
−η̃ z + φ

)
, φ2 + η η̃ = 0. (3.30)

It is convenient to rewrite this as

H(1,1)
0 = z 12 − #X · #σ (3.31)

where #σ are the Pauli matrices and

φ ≡ X3, η ≡ X1 − iX2, η̃ ≡ X1 + iX2. (3.32)

X1, X2, X3 are then complex coordinates with a constraint X2
1 + X2

2 + X2
3 = 0. To keep the

form Eq. (3.31) under SU(2)F transformation, we perform the V -transformation Eq. (2.7) with

V = U†: H(1,1)
0 → U† H(1,1)

0 U . Equivalently, we study the transformation property of the
vortex under SU(2)G+F. We find

#X · #σ → U†
(

#X · #σ
)

U, (3.33)

that is, the vector #X transforms as an adjoint (triplet) representation, except at #X = 0. This
last point - singular point of WCP 2

(2,1,1) - or the origin of the patch Ũ (1,1), is a fixed point of

SU(2) (a singlet). Note also that the transition functions between the patches Ũ (0,2) and Ũ (1,1)

are given by

X3 =
b

a
, X1 − iX2 = −

b2

a
, X1 + iX2 =

1

a
. (3.34)

The patch U (1,1) does not cover points at “infinity”, namely the subspace defined by a = 0 in
the patch U (0,2). That submanifold is nothing but CP 1 parameterized by b which is an edge of
WCP 2

(2,1,1). See Fig. 1. One can verify that the transformation law for a, b in Eq. (3.27) and
that for φ, η, η̃ in Eq. (3.33) are consistent through the transition function Eq. (3.34). These
results confirm those in [16].

4 k = 2 Vortices in U(N) Gauge Theory

In this section the composition of two non-Abelian vortices in a U(N) gauge theory is system-
atically investigated. Up to now we made use of the direct form of the moduli matrix H0(z) for
studying the moduli space structure. Another method for studying the latter will be developed
and used to determine the moduli space below.
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moduli matrix

is associated with each component vortex at z = zi. An overall constant of !φi cannot be
determined from Eq. (2.4) so we should introduce an equivalence relation “∼”, given by

!φi ∼ λ !φi, with λ ∈ C∗. (2.5)

Thus, each vector !φi takes a value in the projective space CP N−1 = SU(N)/[SU(N − 1) ×
U(1)]. This space can be understood as a space parameterized by Nambu-Goldstone modes
associated with the symmetry breaking,

SU(N)G+F → U(1) × SU(N − 1), (2.6)

caused by the presence of a vortex [3, 4, 10, 15, 22]. We call φi the orientational vector.

The solutions Eq. (2.3) are invariant under

(H0, S) → (V (z)H0, V (z)S) (2.7)

with V (z) ∈ GL(N, C) being holomorphic with respect to z. We call this V -transformation
or V -equivalence relation. The moduli space of the vortex equations Eq. (2.2) is obtained as
the quotient space Mtotal = {H0(z)}/GL(N, C). This space is infinite dimensional and can
be decomposed into topological sectors according to the vortex number k. The k-th topological
sector MN,k, the moduli space of k vortices, is determined by the condition that det H0(z) is
of order zk:

MN,k &
{

H0(z)
∣∣∣ det H0(z) = O(zk)

}
/{V (z)}. (2.8)

2.2 Fundamental (k = 1) vortices

Let us first discuss a single non-Abelian vortex in U(2) gauge theory. The condition on the
moduli matrix H0 is det H0 = O(z). Modulo V -equivalence relation Eq. (2.7), the moduli
matrix can be brought to one of the following two forms [10]:

H(1,0)
0 (z) =

(
z − z0 0
−b′ 1

)
, H(0,1)

0 (z) =

(
1 −b
0 z − z0

)
(2.9)

with b, b′ and z0 complex parameters. Here z0 gives the position moduli whereas b and b′

give the orientational moduli as we see below. The two matrices in Eq. (2.9) describe the same
single vortex configuration but in two different patches of the moduli space. Let us denote them
U (1,0) = {z0, b′} and U (0,1) = {z0, b}. The transition function between these patches is given,
except for the point b′ = 0 in the patch U (1,0) and b = 0 in U (0,1), by the V -transformation
Eq. (2.7) of the form [10]

V =

(
0 −1/b′

b′ z − z0

)
∈ GL(2, C). (2.10)

This yields the transition function

b =
1

b′
, (b, b′ '= 0). (2.11)
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associated with the symmetry breaking,

SU(N)G+F → U(1) × SU(N − 1), (2.6)

caused by the presence of a vortex [3, 4, 10, 15, 22]. We call φi the orientational vector.

The solutions Eq. (2.3) are invariant under

(H0, S) → (V (z)H0, V (z)S) (2.7)

with V (z) ∈ GL(N, C) being holomorphic with respect to z. We call this V -transformation
or V -equivalence relation. The moduli space of the vortex equations Eq. (2.2) is obtained as
the quotient space Mtotal = {H0(z)}/GL(N, C). This space is infinite dimensional and can
be decomposed into topological sectors according to the vortex number k. The k-th topological
sector MN,k, the moduli space of k vortices, is determined by the condition that det H0(z) is
of order zk:

MN,k &
{

H0(z)
∣∣∣ det H0(z) = O(zk)

}
/{V (z)}. (2.8)

2.2 Fundamental (k = 1) vortices

Let us first discuss a single non-Abelian vortex in U(2) gauge theory. The condition on the
moduli matrix H0 is det H0 = O(z). Modulo V -equivalence relation Eq. (2.7), the moduli
matrix can be brought to one of the following two forms [10]:

H(1,0)
0 (z) =

(
z − z0 0
−b′ 1

)
, H(0,1)

0 (z) =

(
1 −b
0 z − z0

)
(2.9)

with b, b′ and z0 complex parameters. Here z0 gives the position moduli whereas b and b′

give the orientational moduli as we see below. The two matrices in Eq. (2.9) describe the same
single vortex configuration but in two different patches of the moduli space. Let us denote them
U (1,0) = {z0, b′} and U (0,1) = {z0, b}. The transition function between these patches is given,
except for the point b′ = 0 in the patch U (1,0) and b = 0 in U (0,1), by the V -transformation
Eq. (2.7) of the form [10]

V =

(
0 −1/b′

b′ z − z0

)
∈ GL(2, C). (2.10)

This yields the transition function

b =
1

b′
, (b, b′ '= 0). (2.11)

3

CP   ≈  21
k=1 vortex

Some SU(2) action sends the points in the patch Ũ (0,2) to where a better description is in
the patch Ũ (2,0), and vice versa. Compare Eq. (3.27) with u = 0, v = i, with Eq. (3.14). This
shows indeed that

Ũ (0,2) ∪ Ũ (2,0) " TCP 1. (3.29)

Next consider the patch Ũ (1,1) with

H(1,1)
0 =

(
z − φ −η
−η̃ z + φ

)
, φ2 + η η̃ = 0. (3.30)

It is convenient to rewrite this as

H(1,1)
0 = z 12 − #X · #σ (3.31)

where #σ are the Pauli matrices and

φ ≡ X3, η ≡ X1 − iX2, η̃ ≡ X1 + iX2. (3.32)

X1, X2, X3 are then complex coordinates with a constraint X2
1 + X2

2 + X2
3 = 0. To keep the

form Eq. (3.31) under SU(2)F transformation, we perform the V -transformation Eq. (2.7) with

V = U†: H(1,1)
0 → U† H(1,1)

0 U . Equivalently, we study the transformation property of the
vortex under SU(2)G+F. We find

#X · #σ → U†
(

#X · #σ
)

U, (3.33)

that is, the vector #X transforms as an adjoint (triplet) representation, except at #X = 0. This
last point - singular point of WCP 2

(2,1,1) - or the origin of the patch Ũ (1,1), is a fixed point of

SU(2) (a singlet). Note also that the transition functions between the patches Ũ (0,2) and Ũ (1,1)

are given by

X3 =
b

a
, X1 − iX2 = −

b2

a
, X1 + iX2 =

1

a
. (3.34)

The patch U (1,1) does not cover points at “infinity”, namely the subspace defined by a = 0 in
the patch U (0,2). That submanifold is nothing but CP 1 parameterized by b which is an edge of
WCP 2

(2,1,1). See Fig. 1. One can verify that the transformation law for a, b in Eq. (3.27) and
that for φ, η, η̃ in Eq. (3.33) are consistent through the transition function Eq. (3.34). These
results confirm those in [16].

4 k = 2 Vortices in U(N) Gauge Theory

In this section the composition of two non-Abelian vortices in a U(N) gauge theory is system-
atically investigated. Up to now we made use of the direct form of the moduli matrix H0(z) for
studying the moduli space structure. Another method for studying the latter will be developed
and used to determine the moduli space below.
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det H  = z2

3  + 1
Eto, Konishi,Marmorini,Nitta,Ohashi,Vinci,Yokoi
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co-axial

(z = x + i y)



|φ0|2

|φ1|2

WCP 2
(2,1,1)

CP 2

(1, 1) patch

(2, 0) patch

(0, 2) patch

singularity

a

b

(X1, X2, X3)

11/2

1

O

a′

b′

Figure 1: Toric diagram of WCP 2
(2,1,1) and their three patches Ũ (2,0), Ũ (1,1) and Ũ (0,2). The

diagram is drawn under a gauge fixing condition (called the D term constraint)
∑2

a=0 qa|φa|2 =
1 where U(1)C charges are qa = (2, 1, 1) for WCP 2

(2,1,1) while qa = (1, 1, 1) for the ordinary

CP 2. The triangle with the broken line and O (without singularity) denotes the ordinary CP 2.

4.1 The case of U(N)

Let Z and Ψ be k by k and N by k constant complex matrices, respectively. We consider the
GL(k, C) action defined by

Z → V Z V−1, Ψ → Ψ V−1, V ∈ GL(k, C). (4.1)

It was shown in [22] that the moduli space MN,k of k vortices can be written as the Kähler
quotient [24] defined by

MN,k # {Z, Ψ} //GL(k, C), (4.2)
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SO(7) ⇒ U(2) × U(1) ⇒ ∅ 

SO(5) ⇒ U(2) ⇒  ∅ 

theory,

SO(7)
〈φ1〉#=0−→ U(2) × U(1)

〈φ2〉#=0−→ ∅. (5.7)

As we are interested in a concrete dynamical realization of this, we consider the softly broken N =
2 theory, with Nf = 4 quark hypermultiplets. Such a number of flavors ensures both the original
SO(7) theory being asymptotically free and the SU(2) subgroup being non-asymptotically free.
The low-energy gauge group U(2) × U(1) is completely broken by the squark VEV’s similar to
Eq. (5.3). The large VEV 〈φ1〉 has the form:

〈φ1〉 =





0 iv0 0 0 0 0 0
−iv0 0 0 0 0 0 0

0 0 0 iv0 0 0 0
0 0 −iv0 0 0 0 0
0 0 0 0 0 iv1 0
0 0 0 0 −iv1 0 0
0 0 0 0 0 0 0





, v1 '= v0. (5.8)

The “unbroken” U(2) lies in SO(4)1234 ∼ SU(2)×SU(2) while the U(1) factor corresponds
to the rotations in the 56 plane. (See Appendix A.) The semiclassical monopoles of high-energy
theory are

(i) three degenerate monopoles of mass 2 |v0|/g (they arise as in the SO(5) theory discussed
above);

(ii) two degenerate monopoles of mass |v0 − v1|/g;

(iii) two degenerate monopoles of mass |v0 + v1|/g;

(iv) two degenerate monopoles of mass |v0 − v2|/g;

(v) two degenerate monopoles of mass |v0 + v2|/g.

With a larger SO(N) groups there will also be nondegenerate (abelian) monopoles. Which of
these semiclassical monopoles are the lightest and which of them are stable against decay into
lighter monopole pairs, depend on the various VEVs. If for instance v0 ∼ v1 ) v2, it is
possible that the monopoles (ii) or (iii) are the lightest of all. Of course more detailed issues
such as which of the degeneracies survives quantum effects, are questions which go beyond the
semiclassical approximations.

In fact, when v0, v1 ∼ Λ the standard semi-classical reasoning fails to give any reliable
answer: a fully quantum-mechanical analysis is needed. Fortunately, in the softly broken N = 2
theory such analyses have been performed [12] and we do know that the light monopoles in the
fundamental representation (2) of SU(2) appear in an appropriate vacuum.

Knowing this, we might try to understand how such a result may follow from our definition
of the dual group. At low energies the gauge group U(2) × U(1) is completely broken, leaving
a color-flavor diagonal SU(2)C+F symmetry unbroken. The theory possesses vortices of

π1(U(2) × U(1)) = Z × Z. (5.9)
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5.1 Maximal SU factor; SO(5) → U(2) → ∅

Let us first consider the case the SU(N) factor has the maximum rank,

SO(2N + 1)
〈φ1〉#=0−→ U(N).

To be concrete, let us consider the case of an SO(5) theory, where a scalar VEV of the form

〈Φ〉 =





0 i v 0 0 0
−i v 0 0 0 0

0 0 0 i v 0
0 0 −i v 0 0
0 0 0 0 0




(5.2)

breaking the gauge group as SO(5) → H = SU(2) × U(1)/Z2 = U(2). We assume that
at lower energies some other scalar VEV’s break H completely, leaving however a color-flavor
diagonal SU(2) group unbroken. This model arises semiclassically in softly broken N = 2
supersymmetric SO(5) gauge theory with a large, equal bare quark masses, m, and with a
small adjoint scalar mass µ, with scalar VEV’s given by v = m/

√
2 in Eq.(5.2) and

Q = Q̃† =

√
µm

2





1 0 0 · · ·
i 0 0 · · ·
0 1 0 · · ·
0 i 0 · · ·
0 0 0 · · ·




. (5.3)

(See Appendix A, also the Section 2 of [12], for more details.)

The SO(4) ∼ SU(2) × SU(2) subgroup living on the upper-left corner is broken to
SU(2)×U(1), giving rise to a single ’t Hooft-Polyakov monopole. See Appendix A. On the other
hand, by embedding the ’t Hooft-Polyakov monopole in the two SO(3) subgroups (in the (125)
and (345) subspaces), one finds two more monopoles. All three of them are degenerate. Actually,
E. Weinberg [43] has found a continuous set of degenerate monopole solutions interpolating these,
and noted that the transformations among them are not simply related to the unbroken SU(2)
group.10

From the point of view of stability argument, (3.1), this case is very similar to the case
considered by ’t Hooft, as π1(SO(5)) = Z2: a singular Z2 Dirac monopole can be introduced
in the theory. Indeed the minimal vortex of the low-energy theory is truly stable in this case,
as the smallest element of π1(H) represents also a nontrivial element of π1(G). Note that the
minimum element of π1(H) = π1(SU(2) × U(1)/Z2) ∼ Z corresponds to the simultaneous
rotation of angle π in the (12) and (34) planes (which is a half circle of U(1)), which brings
the origin to the Z2 element of SU(2), diag (−1, −1, −1, −1, 1), followed by an SU(2)
transformation, an angle −π rotation in the (12) plane and an angle π rotation around (34)
plane. The net effect is a 2π rotation in the (34) plane, which is indeed a nontrivial element of
π1(SO(5)) = Z2. Such a vortex would confine the singular Dirac monopole, if introduced into
the theory (See Fig. 1).

10This and similar cases are sometimes referred to as “accidentally degenerate case” in the literature.
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S̃U(r) = SU(r)C+F group. This result is again consistent with the fully quantum mechanical
analysis of N = 2 supersymmetric SO(N) models [12] and in agreement with the universality
of certain superconformal theories discovered in this context by Eguchi et. al. [46].

In the case of maximal-rank SU subgroup, such as G = SO(5), H = U(2), there is
a qualitative difference both in our duality argument and in the full quantum results. For
instance the set of monopoles found earlier by E. Weinberg is shown to belong to a singlet and
a triplet representations of the dual SU(2) group, but their quantum fate is not known. In
supersymmetric models a renormalization-group argument suggest (and the explicit analysis of
softly broken N = 2 theory shows) that the triplet does not survive the quantum effects, as
long as the underlying SO(5) theory is asymptotically free.

Summarizing, in the context of softly-broken N = 2 supersymmetric gauge theories with SU
and SO groups, where fully quantum mechanical results are available via the Seiberg-Witten
curves, our idea on nonabelian monopoles is in complete agreement with known exact results.
However, our argument, based on the homotopy-map-stability argument on almost BPS solitons
and on some exact symmetries, is believed to be of more general validity.
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A Monopoles in SO(N) theories

Here are some formulae useful for the discussion of Section 5. The minimal SU(2) embeddings
(i.e., with the smallest Dynkin index, Tr T aT b) in SO(N) groups are obtained through various
SO(4) ⊂ SO(N) subgroups. For instance the SU(2) × SU(2) ⊂ SO(5) subgroups are
generated by

T ±
1 = −

i

2
(Σ23 ± Σ41), T ±

2 = −
i

2
(Σ31 ± Σ42), T ±

3 = −
i

2
(Σ12 ± Σ43), (A.1)

where e.g., Σ23 =

(
0 1

−1 0

)
, is a rotation in the 23 plane. Non-minimal embeddings corre-

spond to various SO(3) subgroups, acting in 125 and 345 subspaces, for instance, in the SO(5)
example.

The VEV Eq. (5.2) is proportional to T +
3 : it leaves SU−(2) × U+(1) unbroken. An SO(5)

solution can be obtained [3, 4] by embedding the ’t Hooft-Polyakov monopoles [1] in the broken
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The full space M̃N=2,k=2 can be made visible by attaching the remaining parameters a, a′

to CP 1. We arrange the moduli parameters in the three patches Ũ (2,0), Ũ (1,1) and Ũ (0,2) as




a′

1
b′



 ∼




1
X
Y



 ∼




−a
b
1



 , (3.19)

respectively, with the equivalence relation “∼”, defined by




φ0

φ1

φ2



 ∼




λ2 φ0

λ φ1

λ φ2



 with λ ∈ C∗. (3.20)

All the transition functions in Table 1 are then nicely reproduced. The equivalence relation
Eq. (3.20) defines a weighted complex projective space with the weights (2, 1, 1). We thus conclude
that the moduli space for the coincident (coaxial) k = 2 non-Abelian vortices is a weighted
projective space,

M̃N=2,k=2 $ WCP 2
(2,1,1). (3.21)

While the complex projective spaces with common weights, CP n, are smooth, weighted
projective spaces have singularities. In fact, we have shown that Ũ (1,1) $ C2/Z2, and it
has a conical singularity at the origin by (1, X, Y ) $ (1, −X, −Y ), whose existence was
first pointed out by ASY [16]. The origin of the conical singularity can be seen clearly from
the equivalence relation Eq. (3.20). As mentioned above the transition functions in Table 1
are reproduced via the equivalence relation Eq. (3.20). In fact, one finds that λ = 1

X
gives

(λ2, λ X, λ Y ) = (a′, 1, b′) and λ = 1
Y

gives (λ2, λ X, λ Y ) = (−a, b, 1). Note that λ in

the equivalence relation Eq. (3.20) is completely fixed in the patches Ũ (2,0) and Ũ (0,2) given in
Eq. (3.19). However, in the middle patch (1, X, Y ) we still have a freedom λ = −1 which
leaves the first component 1 untouched, but changes (1, X, Y ) → (1, −X, −Y ).

The relation between our result and that in [16] becomes clear by defining ξ2 ≡ φ0 (ξ =
±

√
φ0). Now the parameters (ξ, φ1, φ2) have a common weight λ, so they can be regarded as

the homogeneous coordinates of CP 2. But one must identify ξ $ −ξ clearly, and this leads to
the Z2 quotient (ξ, φ1, φ2) $ (ξ, −φ1, −φ2). Therefore our moduli space can also be rewritten
as

M̃N=2,k=2 $ CP 2/Z2 (3.22)

reproducing the result of [16]. Such a Z2 equivalence, however, does not change the topology
of MN=2,k=2: it remains CP 2 [14]. This is analogous to an (x, y) ∼ (−x, −y) equivalence
relation (with real x, y) introduced in one local coordinate system of CP 1 (a sphere), which
leads to a sphere with two conic singularities (a rugby ball, or a lemon) instead of the original
smooth sphere. 3 See Appendices A and B for more details.

3For instance, it is easily seen that MN=2,k=2 $ CP 2/Z2 remains simply connected. The higher homotopy
groups cannot change by a discrete fibration [23].
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i

2
(Σ23 ± Σ41), T ±

2 = −
i

2
(Σ31 ± Σ42), T ±

3 = −
i

2
(Σ12 ± Σ43), (A.1)

where e.g., Σ23 =

(
0 1

−1 0

)
, is a rotation in the 23 plane. Non-minimal embeddings corre-

spond to various SO(3) subgroups, acting in 125 and 345 subspaces, for instance, in the SO(5)
example.

The VEV Eq. (5.2) is proportional to T +
3 : it leaves SU−(2) × U+(1) unbroken. An SO(5)

solution can be obtained [3, 4] by embedding the ’t Hooft-Polyakov monopoles [1] in the broken

22

Semiclassical monopoles in    

2 + 3  + 1

2 
from the breaking of   SO(4)        and 

S̃U(r) = SU(r)C+F group. This result is again consistent with the fully quantum mechanical
analysis of N = 2 supersymmetric SO(N) models [12] and in agreement with the universality
of certain superconformal theories discovered in this context by Eguchi et. al. [46].

In the case of maximal-rank SU subgroup, such as G = SO(5), H = U(2), there is
a qualitative difference both in our duality argument and in the full quantum results. For
instance the set of monopoles found earlier by E. Weinberg is shown to belong to a singlet and
a triplet representations of the dual SU(2) group, but their quantum fate is not known. In
supersymmetric models a renormalization-group argument suggest (and the explicit analysis of
softly broken N = 2 theory shows) that the triplet does not survive the quantum effects, as
long as the underlying SO(5) theory is asymptotically free.

Summarizing, in the context of softly-broken N = 2 supersymmetric gauge theories with SU
and SO groups, where fully quantum mechanical results are available via the Seiberg-Witten
curves, our idea on nonabelian monopoles is in complete agreement with known exact results.
However, our argument, based on the homotopy-map-stability argument on almost BPS solitons
and on some exact symmetries, is believed to be of more general validity.
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125 3451234 ′ ′

These monopoles are confined by k=2 vortices

SO(4)        ~ 

34561256
SO(4)        

Carry   (2 , 1)  charges 

These are  confined by k=2 ( π  (G)= Z  )  vortex,  but  with flux in  
2

 Min [ π (U(2) ]    AND   Min  [ π (U(   )  ] ∼  transform  as   2   of SU(2)   

∼  transform  as   3 +1     of SU(2)   

C+F

C+F

  cfr.  E. Weinberg

1 1 1
1

Eto, Ferretti,Konishi,Marmorini,Nitta,Ohashi,Vinci,Yokoi
‘07



SO(2N+1), SO(2N)  ⇒ U(r) × U(1) × U(1) × ···  ⇒   ∅

USp(2N)⇒ U(r) × U(1) × U(1) × ····,    r ≤ N

Qualitative difference for r=N (maximum rank)  and r<N :

◆ H= U(N)   monopoles in   ☐   or  in ☐    of SU(N)

G simply connected: 

☐ ☐

RG:  AF  of G: N    < 2N-1 (2N-2)f
fIF of H:  N   >  2N  

} Not compatible

◆ H= U(r)x···   monopoles in    of SU(r):  OK for   r < N  /2f☐

☀ Only light monopoles in      of SU(r),  r < N  /2  in the full quantum analysis ☐

Monopoles in r   both { from k=1 vortices of π (U(r))    
fully quantum analysis      (Carlino, KK, Murayama)

(Carlino, KK, Kumar, Murayama ‘01)

f

1



Fully quantum mechanical analysis at    μ ~ m  ~ Λ
   (Carlino, K.K. , Kumar,  Murayama, 2000, 2001;  Hanany-Oz, 1998)

◆ Semiclassical analysis at    μ ,  m  ≫  Λ;   

◆ Decoupling analysis at    μ   ⇒ ∞,  Λ ,m fixed;   

◆ Fully quantum mechanical analysis at    μ ,  m  ∼  Λ;   Seiberg-Witten curves

◆ Vacuum counting 

◆ Low-energy effective actions at     μ ,  m  ∼  Λ;   

◆ m  perturbation of the conformal invariant points  (Eguchi et. al) 

◆ Quantum analysis at   μ   ⇒ ∞  Λ(N=1)   m  fixed.  N=1  ADS  instanton superpotential    

9 Quark-Mass Perturbation on the Curve

In this section we develop a perturbation theory in the quark masses for the singularities of the

Seiberg-Witten curves of SU(nc) and USp(2nc) theories, around certain conformal points. The

results of this section allows us, on the one hand, to establish the connection between the classes

of CFT singularities of N = 2 space of vacua and the N = 1 vacua surviving the perturbation

µΦ2 (as discussed in Section 6), and on the other, to identify the N = 1 vacua at small µ (whose

physics was discussed in the previous section) with those found at large µ.

9.1 Perturbation around CFT Points: SU(nc)

i) Generic r (r < nf

2
) and formulation of the problem.

Suppose the conformal point (Eq.(6.13)), diag φ = ( 0, 0, . . . , 0
︸ ︷︷ ︸

r

, φ(0)
r+1, . . . , φ(0)

nc
),

∑nc

a=r φ(0)
a =

0, where the full curve with mi = 0

y2 =
nc∏

k=1

(x − φk)2 + 4Λ2nc−nf

nf
∏

j=1

(x + mj)|mi=0 (9.1)

takes the form

y2 = x2r(x − β01)
2 · · · (x − β0,nc−r−1)

2(x − γ0)(x − κ0), r = 0, 1, 2, . . . , [nf/2]

(9.2)

is given. For nonzero and small bare quark masses mi the multiple zero at the origin will split,

and other zeros will be shifted. We require that the perturbed singularity,

diag φ = ( λ1, λ2, . . . , λr, φ(0)
r+1 + δφr+1, . . . , φ(0)

nc
+ δφnc), (9.3)

r∑

a=1

λa +
nc∑

a=r+1

δφa = 0, (9.4)

be such that the curve

y2 = F (x) =
r

∏

a=1

(x − λa)2
nc∏

a=r+1

(x − φ0a − δφa)2 −
nf
∏

i=1

(x + mi), (9.5)

is maximally singular, i.e.,

y2 =
r

∏

a=1

(x − αa)2{
nc−r−1

∏

b=1

(x − βb)
2}(x − γ)(x − κ); (9.6)

betai = β0i + δβi; γ = γ0 + δγ, κ = κ0 + δκ. (9.7)

The problem is to determine how many such sets {λi, αi, δβi, δφi, δγ, δκ} exist. The con-

dition that the curve is maximally singular (maximal number of double branch points) can be
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8 Effective Lagrangian Description of N = 1 Vacua at Small µ

A deeper insight into physics at small mi and µ can be obtained by re-examining the works

of Argyres, Plesser and Seiberg [17] and Argyres, Plesser and Shapere [18], who showed how the

non-renormalization theorem of the hyperKähler metric on the Higgs branch could be used to show

the persistence of unbroken non-abelian gauge group at the “roots” of the Higgs branches where

they intersect the Coulomb branch. In fact, they found two kinds of such submanifolds, called

“non-baryonic branch” (or mixed-branch) roots, and “baryonic branch” roots (these terminologies

refer specifically to the SU(nc) theory, but the situation is similar also in USp(2nc) theory). The

latter is present only for larger values of the flavor (nf > nc) while the former exists always.

Below, we show how the low-energy effective action description of [17, 18] match our findings of

Sections 3 - 7, after correcting a few errors and clarifying some issues left unclear there. In doing

so, a very clear and interesting picture of the infrared dyamics of our theories emerges, which was

summarized in the Introduction.

Let us discuss the SU(nc) theories first.

8.1 SU(nc)

The non–baryonic roots are further classified into sub–branches characterized by an unbroken

SU(r)×U(1)nc−r gauge symmetry for r ≤ [nf/2], with nf flavor of massless hypermultiplets in

the fundamental representation of SU(r), as well as nc −r −1 singlet “monopole” hypermultiplets

having charges only in the U(1)nc−r gauge sector. Their quantum numbers are shown in Table 4

taken from [17].

Upon turning on the µΦ2 perturbation, the effective superpotential of the theory is, according

to Argyres, Plesser and Seiberg [17],

Wnon bar =
√

2Tr(qφq̃)+
√

2ψ0Tr(qq̃)+
√

2
nc−r−1

∑

k=1

ψkekẽk+µ

(

Λ
nc−r−1

∑

i=0

xiψi +
1

2
Trφ2

)

,

(8.1)

where the last term arises from µΦ2 perturbation, φ referring to the SU(r) part of the adjoint

field and ψi being the N = 2 partner of the dual U(1)i gauge field; xi are some constants. By

SU(r) U(1)0 U(1)1 . . . U(1)nc−r−1 U(1)B

nf × q r 1 0 . . . 0 0

e1 1 0 1 . . . 0 0
...

...
...

...
. . .

...
...

enc−r−1 1 0 0 . . . 1 0

Table 4: The effective degrees of freedom and their quantum numbers at the “nonbaryonic root”.
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CONFINEMENT 11

Phases of Softly Broken N = 2 Gauge Theories
label (r) Deg.Freed. Eff. Gauge Group Phase Global Symmetry

0 monopoles U(1)nc−1 Confinement U(nf)
1 monopoles U(1)nc−1 Confinement U(nf − 1)× U(1)

≤ [
nf−1

2 ] NA monopoles SU(r)× U(1)nc−r Confinement U(nf − r)× U(r)
nf/2 rel. nonloc. - Confinement U(nf/2)× U(nf/2)

BR NA monopoles SU(ñc)× U(1)nc−ñc Free Magnetic U(nf)

Table 1: Phases of SU(nc) gauge theory with nf flavors. ñc ≡ nf − nc.

Deg.Freed. Eff. Gauge Group Phase Global Symmetry
1st Group rel. nonloc. - Confinement U(nf)

2nd Group dual quarks USp(2ñc)× U(1)nc−ñc Free Magnetic SO(2nf)

Table 2: Phases of USp(2nc) gauge theory with nf flavors with mi → 0.
ñc ≡ nf − nc − 2.

W(φ, Q, Q̃) = µ TrΦ2 + miQ̃iQ
i, mi → 0

Dual qualks of r vacua are GNO monopoles



CONFINEMENT 13

r=1

r = nf /2- - -

Non Abelian monopoles

Abelian monopoles

(Non-baryonic)
Higgs Branches

Baryonic
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 SQCD (SU(n) with nf quarks)

r=0

<Q> 0

< >  0

N=1 Confining vacua (with 2 perturbation)

N=1 vacua (with 2 perturbation) in free magnetic phase

SCFT

Φ

Φ
Φμ

μ
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CONFINEMENT 14

Non Abelian monopoles

Higgs Branches

Special
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 USp(2n) Theory with nf Quarks

<Q> 0

< >  0

N=1 Confining vacua (with 2 perturbation)

N=1 vacua (with 2 perturbation) in free magnetic phase

SCFT

Φμ
Φμ

Φ



Various observations 

• GNOW monopoles not always the correct IR degrees of freedom

e.g.   USp(2r)⇔SO(2r+1) in N=2 models:  wrong symmetry

• Nonabelian monopoles ∼ baryonic components of  Abelian monopoles 

Seiberg
duality 

SU(N)⇔
SU(N  - N)f

A  ~    

and

φ =
1

√
2

diag (−m1, . . . , −mr, c, . . . , c) ; c =
1

ñc − r

r
∑

k=1

mk . (8.32)

We find two types of vacua. The first type has ek = ẽk = (µΛxk/
√

2)1/2 for all k = 1, · · · nc−ñc.

Minimizing the potential in this case, we find

N2 =
ñc−1
∑

r=0

(ñc − r) nfCr (8.33)

N = 1 vacua, characterized by the VEVS Eq.(8.32) and

di, d̃i ∼ √
µm

mi→0−→ 0, ek, ẽk ∼
√

µΛ. (8.34)

The unbroken SU(ñc − r) gauge group gives ñc − r vacua each. These vacua describe the vacua

with unbroken U(nf ) symmetry, which are known to exist from the large µ analysis. The total

number of vacua of this group found here agrees with Eq.(6.22) at the large µ regime.

The second type of vacua in Eqs. (8.24,8.25) has one of the ek = ẽk = 0 (hence nc−ñc = 2nc−
nf choices) while ∂W/∂ψk = 0 requires quarks to condense with q = q̃ ∼

√
µΛ. Dropping ek =

ẽk = 0 from the Lagrangian, it becomes the same as that of the non-baryonic root Eqs. (8.1,8.2)

and gives (2nc − nf) nfCñc vacua. This precisely compensates the exclusion of r = ñc in the sum

for the non-baryonic roots and the correct total number of vacua N1 + N2 is obtained.

We thus find that both the number and the symmetry properties of the N = 1 theories at small

adjoint mass µ match exactly those found at large µ. For vacua with r = 1, the “quarks” in the

effective Lagrangian (8.1) are nothing but the U(1)nc−1 monopoles in the fundamental representa-

tion of U(nf ); this is checked by studying the monodromy around the singularity which showed that

the “quarks” are indeed magnetically charged. Therefore the standard picture of confinement and

flavor symmetry breaking by condensation of flavor-non-singlet monopoles is valid for these vacua.

For general vacua r > 1 associated with various nonbaryonic roots, the effective Lagrangian

(8.1) describes correctly the physics of N = 1 vacua at small µ, in terms of magnetic quarks of

a non Abelian SU(r) × U(1)nc−r theory. In contrast to the r = 1 case, these quarks cannot

be identified with the semiclassical monopoles of the maximally Abelian U(1)nc−1 group. Note

that the condensation of such monopoles in the rank-r anti-symmetric tensor representation, which

might be suggested from the number of the singularities which group into a nearby cluster in the

small mi limit and at the same time from the semiclassical analysis (see Appendix B), would have

yielded the correct pattern of symmetry breaking; at the same time, however, it would have led to

an uncomfortably large number of Nambu-Goldstone bosons associated to the accidental SU(nfCr)

symmetry. The system avoids this paradox elegantly, by having magnetic quarks as low-energy

degrees of freedom and having these condensed. These facts, and the comparison of their quantum

numbers, lead us to conclude that, as we approach the non-baryonic roots from semi-classical (large

VEV) region on the Coulomb branch, the semi-classical monopoles in the rank-r anti-symmetric

tensor representation are smoothly matched to “baryons” of the SU(r) theory,

εa1...arqi1
a1

qi2
a2

. . . qir

ar
, (8.35)
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SU(N  ) flavorf

SU(r)  color 

(Neccesary in order not to violate Nambu-Goldstone theorem)

• SCFT  vacua in USp  :    Global symm (SO(2N  ) )  not realized by local fields 

QCD:   if  Abelian monopoles  M   ~ (N ,  N  )  of SU(N )  x SU(N )
i
j

Lf f R

〈 M  〉≠ 0    ⇒  Confinement & chiral symm. breaking   

       but too many NG bosons 

f

Marmorini, Yokoi, KK  ’05
Carlino, Murayama, KK  ‘00

• Seiberg duality ⇐  vacuum counting; matching classical and quantum r  vacua  

f f



• r= N  /2  vacua of  SU(N) theory; all confining vacua of SO and USp  
theories with μ~Λ, m⇒0, are nontrivial SCFT

• Relatively nonlocal dyons ⇒ no local effective action

• SU(2)x U(1)  vacua of SU(3), N  =4  theory, G   = U(4):    4  2  
monopoles + 2  2 dyons       Confinement and DSB  due to            
〈 ε   M  M 〉≠ 0.     U(4) ⇒ U(2) x U(2)

• SU(2)x U(1)  vacua of USp(4), N  =4  theory, G  = SO(8):    4  2  
monopoles + 2  2 dyons + 2 quarks.      Confinement and DSB  due to 
〈 M M 〉≠ 0.     SO(8)  ⇒  U(4)

Strongly interacting SCFT and confinement

which some massless particles are present (corresponding to a double branch point of

the curve Eq. (2.7)), and study how various quantities transform as one goes around

such loci (monodromy matrices). This problem has been analyzed in detail in [25]; the

low-energy degrees of freedom are found to carry the magnetic and electric U(1) ×
U(1) charges, shown in Table 1, with the first U(1) factor (magnetic or electric)

referring to the subgroup of the SU(2). The system having N = 2 supersymmetry,

there are also particles M̃α, D̃α, Ẽα, with conjugate gauge quantum numbers.

Particles (g1, g2; q1, q2)

M1, M2 (±1, 1; 0, 0)4

D1, D2 (±2, −2; ±1, 0)

E1, E2 (0, 2; ±1, 0)

Table 1: The charges of the massless doublets. gi (qi) is the magnetic (electric) charge with respect
to the i-th U(1) factor.

The superscript in the table indicates the multiplicity of the massless particle

present. The pair of particles carrying opposite charges with respect to the first

U(1) (magnetic or electric) factor, can be interpreted naturally as forming a doublet

of the SU(2). This way we arrive at the conclusion that there are massless monopole

doublets carrying the 4 flavor charge of SU(4), and a dyonic and an electric doublets

which are singlets of the global SU(4). The particles in the table carry indeed

relatively nonlocal charges, i.e., nonvanishing relative Dirac unit [13],

2∑

i=1

(giq
′
i − g′

iqi) #= 0, Mod [N ] (2.10)

(for SU(N), here N = 3), and the theory is superconformal [20]. Let us recall

that the cancellation of the beta function has been checked in [25] by generalizing the

argument by Argyres and Douglas [19], to our nonabelian SCFT. Here, in contrast to

the case studied in [19], the gauge multiplet contributes. In the dual base in which

M, M̃ fields are coupled minimally to the dual gauge bosons, the contribution of

four flavors of M, M̃ cancel that of the SU(2) gauge multiplet. The contribution of

D and E fields to the beta function must be computed in the base where these are

coupled locally to the appropriate (dyonic or original) gauge bosons, then the result

transformed back to the magnetic base. It turns out they cancel precisely

1 + (2 τ ∗ + 1)2 = 0, (2.11)

5

table. They find that, as compared to the SU(3) SCFT considered above, there is

one extra doublet in this system (C1, C2 in Table. 2). The structure of the singular-

ities (loci in the quantum moduli space where some dyon becomes massless) and the

monodromies around each part of the singular loci, hence the charge determination

of the Table. 2, have been double-checked independently by the present authors.

Particles Charge

M1, M2 (±1, 1, 0, 0)4

D1, D2 (±2, −2, ±1, 0)

E1, E2 (0, 2, ±1, 0)

C1, C2 (±2, 0, ±1, 0)

Table 2: The charges of the massless doublets in one of the SCFT vacua.

Given the charges of the massless particles and given the symmetry breaking

pattern,

SO(8) → U(4), (2.21)

(known from the analysis at large µ [27]), we are forced to conclude that the monopole

pair M, M̃ condenses as

〈M i
aM̃a

j 〉 = v δi
j %= 0, a, b = 1, 2 and i, j = 1, . . . , 4. (2.22)

Although the set of massless particles are rather similar to those found in the r = 2

vacuum of the SU(3) theory, we do not expect “baryonlike” condensate (2.13) to

form in this system. Other condensates such as

〈CaD̃a〉, 〈DaC̃a〉, 〈CaC̃a〉, (2.23)

etc., including the new doublet C, might well form, but would not modify the sym-

metry breaking pattern.

The difference in the massless spectrum and in the dynamics of this system, as

compared to those in the SU(3) theory discussed in the previous section, can be

attributed to the fact that these two SCFT’s belong to two different universality

classes. See below for more about this point.

9

~

Non abelian  Argyres-Douglas vacua

QCD?

Auzzi-Grena-KK

f

f f

f f

Auzzi-Grena

SCFT



• QCD : a conjecture
Non-Abelian monopoles of dual 

SU(3)       U(2)       X

  M   ~ (N  ,  1  )  ,  M   ~ (1 ,  N  )    of   SU  (N  )  x SU  (N  )

〈   M  M    〉~    ṫὗὗṼ

〈   ψ  ψ    〉~    ṫὗὗṼ
i

f ff f RL

L

L

R

R

R

i j

j

2

3

(☀)

induced by  (☀)   

L

—

(☀)  leads to  confinement / XSB

Conjecture



Summary:

 ①  Many fully quantum-mechanical properties about the nonabelian monopoles in G=     

       SU, SO, USp theories are known  (their existence,  their q.n. ,  etc. )  (’94 - ‘06)

② Monopole properties from  H ~ H       ,   as seen in   G ⇒ H ⇒ ∅ 
C+F

∼

◊ New results on the vortex moduli  in H= U(N)  theories  H ⇒ ∅  (’03 - ’06 ) ⇒

♡ Agreement  between  ①  and   ② 

       Nonabelian dual gauge groups occur only in theories with flavor

 ③ Model of confinement (nonabelian) : natural generalization of  Nambu, ‘t Hooft, 

         Mandelstam picture 

◊ New results on the vortex-monopole complex in SO(N+2) ⇒ SO(N)xU(1)  
Ferretti, Konishi, ‘07
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