— Pisa, 23 October 2014 —

Quantum quenches, Entanglement and the transverse field Ising chain from excited states

Leda Bucciantini

mainly based on

LB, Kormos, Calabrese 1401.7250; Kormos, LB, Calabrese, 1406.5070

Outline of the talk

- I. Introduction to non-equilibrium many-body quantum physics
- II. State of the art: Relaxation, Light-Cone effect, Entanglement entropy
- III. Extension to a quench in the transverse field Ising chain with a new ingredient: initial excited states
- IV. Stationary and dynamical behaviour
- V. Thermodynamic entropies of the stationary state
- VI. Conclusions & Outlooks

I. Introduction

Long-Standing Questions

[Von Neumann '29; Birkhoff '30]

- Does an isolated quantum system reach a stationary state starting from an arbitrary initial state?
- ► If so, is there a way to economically describe the stationary state?
- ▶ How do correlation functions and observables depend on time?

What's the simplest way to drive a system out-of-equilibrium?

Sudden quantum quench
$$H(\lambda) \xrightarrow{t=0} H(\lambda')$$

The Quench paradigm

- \blacktriangleright prepare a many-body quantum system in an eigenstate $|\psi_0\rangle$ of a pre-quenched hamiltonian H
- ▶ from t = 0 let it evolve unitarily with a different post-quenched time-independent hamiltonian H'

$$|\psi(t)\rangle = e^{-iH't}|\psi_0\rangle, \qquad [H, H'] \neq 0$$

Initial state is NOT an eigenstate nor a finite superposition of eigenstates of H'

Evolution from an out-of-equilibrium state $|\psi_0\rangle$

II. State-of-the-art:

1. Relaxation

Can the whole system attain stationary behaviour?

Initial pure state + unitary evolution \rightarrow it will be in a pure state $\forall t$

Global observables (i.e. the whole system) can never relax

As an example, a spin-chain

What about local observables?

First taking B infinite, then $t \to \infty$ a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a "thermal" bath on A No time averaging involved!

Density matrix:

$$\rho_{\mathsf{A}\cup\mathsf{B}}(t) = e^{-iH't} |\psi_0\rangle \langle \psi_0| e^{iH't}$$

Reduced Density Matrix of A: $\rho_{A}(t) \equiv \operatorname{Tr}_{B}[\rho_{A\cup B}(t)]$

$$\lim_{t \to \infty} \lim_{N \to \infty} \rho_{\mathsf{A}}(t) = \lim_{N \to \infty} \operatorname{Tr}_{\mathsf{B}} \left[\rho_{\mathsf{A} \cup \mathsf{B}}^{\text{mixed}} \right]$$

- ρ_A stationary and allows for an ensemble description (mixed state)
- determines all local correlation functions

Which is the statistical ensemble for $\rho_{A\cup B}^{\text{mixed}}$?

Non Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathrm{Gibbs}} = \frac{e^{-H/T_{\mathrm{eff}}}}{Z_{\mathrm{Gibbs}}}$$

Thermal ensemble only one integral of motion E few info on the whole Initial state

[Deutsch '91; Srednicki '95]

Integrable Systems

$$\rho_{\mathsf{A}\cup\mathsf{B}}^{\mathrm{GGE}} = \frac{e^{-\sum_m \beta_m I_m}}{Z_{\mathrm{GGE}}}$$

Non thermal ensemble complete set of local commuting integrals of motions I_m $I_m = \sum_{j=1}^N O_{j,j+1,\cdots,j+m},$ $\mathcal{O}(m)$ -support, m finite full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

 based on many theoretical, experimental and numerical outcomes [Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

▶ not quite the end of the story [De Nardis et al '14, Kormos et al '14, Andrei et al '14]

Main test: exact solution of the full dynamics (free theories, TFIC, XY...)

2. Light-cone spread

Not really, as an example, the thermalization of $\langle \sigma_i \sigma_j \rangle$ occurs after $t \sim \frac{|i-j|}{2v_{max}}$.

In non relativistic quantum systems with finite-range interactions and a finite local Hilbert space: $\exists \text{ finite group velocity } v_{max}$, with exponentially small effects outside an effective light cone

[[]Cheneau et al '12]

Is this a general feature? YES \rightarrow Lieb-Robinson Bound!

[Lieb, Robinson '72]

3. Entanglement entropy

A pure quantum state of a bipartite system is not necessarily a pure state of each subsystem separately.

$$S_{\mathsf{A}} = -\mathrm{Tr}[\rho_{\mathsf{A}} \ln \rho_{\mathsf{A}}] \qquad - \underbrace{\mathsf{B}}_{\ell \text{ spins}} \qquad -$$

Entanglement entropy is a measure of how much a configuration of the subsystem A depends on one of B.

- product state: $|\psi\rangle = |\phi\rangle_A \otimes |\phi\rangle_B$: $S_A = 0$
- maximally entangled state: $|\psi\rangle = \frac{1}{\sqrt{D}} \sum_{l} |\phi_l\rangle_A \otimes |\phi_l\rangle_B$, In an entangled state the state of A is not a vector but a density matrix.

Example: take a qubit in a singlet state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B), \qquad \rho_A = \left(\begin{array}{cc} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{array}\right)$$

Entanglement in a quantum coherent system is responsible for appearance of entropy, hence for thermalization process!

III. What we did

Objective

Study the time evolution and stationary limit of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

Objective

Study the time evolution and stationary limit of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

Objective

Study the time evolution and stationary limit of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

Objective

Study the time evolution and stationary limit of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

Objective

Study the time evolution and stationary limit of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state Let's discuss first this point

Why should we focus on excited states?

- Radically different behaviour of entanglement entropy for excited states: ground states:

 $\begin{array}{l|l} \bullet \mbox{ massive non degenerate GS:} & S_{GS} \simeq \partial l & {}_{[\mbox{Bombelli '88}; \mbox{Srendicki '93}]} \\ \bullet \mbox{ critical conformal theories:} & S_{GS} \simeq \frac{c}{3} \log(l) + c_1' & {}_{[\mbox{Calabrese Cardy}]} \end{array}$

higly-excited states (# excitations \simeq N)

 $\overline{S_{ ext{exc}} \simeq l + \mathcal{O}(\log l)}$ [Alba, Fagotti, Calabrese, '09; Sierra, …]

insensitive to the criticality of the ground states

- Look for universal behaviour
- Room for new effects

Quenched Transverse field Ising chain

$$H(h) = -\frac{1}{2} \sum_{j=1}^{N} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right] + \text{PBC} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} h$$

 $|0\rangle$: ground state of H(h)

From interacting spins σ_i to free spinless fermions b_k

$$H(h) = \sum_{k} \epsilon_h(k) \left(b_k^{\dagger} b_k - \frac{1}{2} \right) \qquad \qquad \epsilon_h^2(k) = 1 + h^2 - 2h \cos \frac{2\pi k}{N}$$

Interaction quench $h \to h'$

Initial state: $|\psi_0
angle \equiv \prod_k (b_k^\dagger)^{m_k}|0
angle$

- excited state of pre-quenched hamiltonian H(h)
- Z₂-invariant: $\langle \psi_0 | \sigma_j^x | \psi_0 \rangle = 0$
- m_k : fermionic initial occupation number of k-mode

IV. Stationary and dynamical behaviour

Local relaxation in the TFIC from excited states

"A" is a block of ℓ contiguous spins

 $\rho_A(t) = \operatorname{Tr}_B(|\psi_0(t)\rangle\langle\psi_0(t)|) \qquad \qquad |\psi_0(t)\rangle = e^{-iH(h')t}|\psi_0\rangle$

Result: GGE works even for excited states!

$$\rho_{\mathrm{GGE},A} = \rho_A(\infty)$$

Idea:

Free systems \rightarrow Wick's thm \rightarrow just need to prove it for propagators!

exactly solvable dynamics

• ensemble averages
$$ho_{GGE,A} = rac{e^{-\sum_k \lambda_k n_k}}{Z}$$

 n_k : post-quench conserved fermionic occupation number operators

Local conserved charges from excited states

$$\begin{split} \langle I_n^+ \rangle &= \int_{-\pi}^{+\pi} \frac{dk}{4\pi} \cos(nk) \epsilon_k \left[1 + m_k^S \cos \Delta_k \right] & m_k^S \equiv m_{-k} + m_k - 1 \\ \langle I_n^- \rangle &= -\int_{-\pi}^{+\pi} \frac{dk}{4\pi} \sin[(n+1)k] \frac{m_k^A}{m_k^A} & m_k^A \equiv m_{-k} - m_k \end{split}$$
Two classes of IS

▶ $m_k^A = 0$: Only $\langle I_n^+ \rangle \neq 0$ (GS belongs to this class!)

•
$$m_k^A \neq 0$$
: Both $\langle I_n^+ \rangle$ and $\langle I_n^- \rangle \neq 0$

Result: Doubling of non zero VEVs local conserved charges wrt ground state

Does it alter the asymptotic time dependence of correlations?

- transverse magnetization
- longitudinal two-point function

$m^{z}(t) = \underbrace{\int_{-\pi}^{\pi} \frac{dk}{4\pi} e^{i\theta_{k}} m_{k}^{S} \cos \Delta_{k}}_{\text{stationary part}} - i \underbrace{\int_{-\pi}^{\pi} \frac{dk}{4\pi} e^{i\theta_{k}} m_{k}^{S} \sin \Delta_{k} \cos(2\epsilon_{k}t)}_{\text{time-dependent}}$

Asymptotic behaviour: stationary phase approximation

m(k) analytic

$$m^{z}(t) \simeq t^{-\frac{3}{2}} + \mathcal{O}(t^{-\frac{2n+1}{2}})$$

AS GROUND STATE

m(k) non-analytic

$$m^{z}(t) \simeq t^{-1} + \mathcal{O}(t^{-\frac{2n+1}{2}})$$

NOVELTY!

$\rho^{xx}(\boldsymbol{\ell}, \boldsymbol{t}) \equiv \langle \Psi_0(\boldsymbol{t}) | \sigma^x_n \sigma^x_{\boldsymbol{\ell}+n} | \Psi_0(\boldsymbol{t}) \rangle$

Results

- Emergent light-cone spreading of correlations (as for GS)
- ► Common behaviour $\forall m_k$ analyzed (double-stepfunction, linear, quadratic)...

$\rho^{xx}(\boldsymbol{\ell}, \boldsymbol{t}) \equiv \langle \Psi_0(\boldsymbol{t}) | \sigma^x_n \sigma^x_{\boldsymbol{\ell}+n} | \Psi_0(\boldsymbol{t}) \rangle$

Results

- Emergent light-cone spreading of correlations (as for GS)
- ► Common behaviour $\forall m_k$ analyzed (double-stepfunction, linear, quadratic)...

 $\rho^{xx}(\boldsymbol{\ell}, \boldsymbol{t}) \equiv \langle \Psi_0(\boldsymbol{t}) | \sigma_n^x \sigma_{\boldsymbol{\ell}+n}^x | \Psi_0(\boldsymbol{t}) \rangle$

Results

- Emergent light-cone spreading of correlations (as for GS)
- ► Common behaviour $\forall m_k$ analyzed (double-stepfunction, linear, quadratic)...

 $\rho^{xx}(\boldsymbol{\ell}, \boldsymbol{t}) \equiv \langle \Psi_0(\boldsymbol{t}) | \sigma_n^x \sigma_{\boldsymbol{\ell}+n}^x | \Psi_0(\boldsymbol{t}) \rangle$

Results

- Emergent light-cone spreading of correlations (as for GS)
- ► Common behaviour $\forall m_k$ analyzed (double-stepfunction, linear, quadratic)...

The anomalous state: $m_k = \theta(k - \frac{\pi}{2})$

Still open problems

- Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

V. Thermodynamic entropies of the stationary state

The system will always be globally in a zero entropy state.

Can we define the entropy for the stationary state reached a quantum quench?

Diagonal ensemble

$$\rho_{\rm D} = \sum_j |\langle j | \psi_0 \rangle|^2 |j\rangle \langle j|$$

- captures the long time averaged expectation value of all observables but
- knows everything of the initial state!

Diagonal entropy

 $S_{\rm D} = - \operatorname{Tr}[\rho_{\rm D} \ln \rho_{\rm D}]$

Subsystem's stationary ensemble

$$\rho_{\rm GGE} = \frac{e^{-\sum_k \lambda_k I_k}}{Z}$$

- represents the long-time limit of only local observables
- its entropy coincides with the stationary value of the entanglement entropy

 $\label{eq:GGE} \begin{array}{l} \mathsf{GGE} \mbox{ entropy} \\ \\ S_{\mathsf{GGE}} = -\mathsf{Tr}[\rho_{\mathsf{GGE}} \ln \rho_{\mathsf{GGE}}] \end{array}$

What is the relation between these entropies?

Initial Ground states

$$S_{\text{GGE}} = 2S_{\text{D}}$$

- ► verified in some integrable systems [Gurarie '13, Calabrese '14]
- consequence of the inequivalence of $\rho_{\rm GGE}$ and $\rho_{\rm D}$

Initial Excited states

Many different microstates sharing the same macroscopical distribution of excitations in the thermodynamic limit

$$\begin{array}{c} m_{1k} \\ m_{2k} \\ \cdots \\ \cdots \end{array} \right\} \xrightarrow[N \to \infty]{} m(p)$$

In the $N \to \infty,$ averages over microstates need to be introduced.

What are the consequences on
$$S_{GGE}$$
 and S_{D} ?

Finite Systems: $m_k = \{0, 1\}$

$$S_{\mathsf{D}} = \sum_{k>0} \left[m_k m_{-k} + (1 - m_k)(1 - m_{-k}) \right] s_k$$

$$S_{\text{GGE}} = \sum_{k} \left[m_k m_{-k} + (1 - m_k)(1 - m_{-k}) \right] s_k$$

only the modes with $m_k = m_{-k}$ contribute to the entropy!

 $S_{\text{GGE}} = 2S_{\text{D}}$ even for excited states!

From N finite to the thermodynamic limit

25/28

$$\begin{split} S_{\text{GGE}}^{ST} &= N \int_{-\pi}^{\pi} \frac{dp}{2\pi} H[m(-p) - m(p) + (m(p) + m(-p) - 1) \cos \Delta(p)] \\ \text{agrees with the stationary limit of entanglement entropy!} \end{split}$$

V. Conclusions and Outlook

We have considered quenches from excited states

Validity of GGE

Horizon effect for multipoint correlation functions

Still open problems

Non-trivial dependence for m_k^A ?

Excitations in truly interacting models?

Thank you for your attention