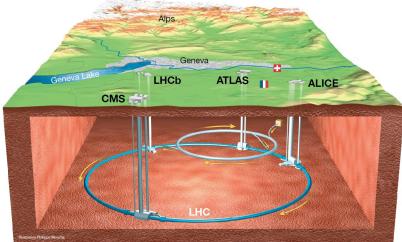
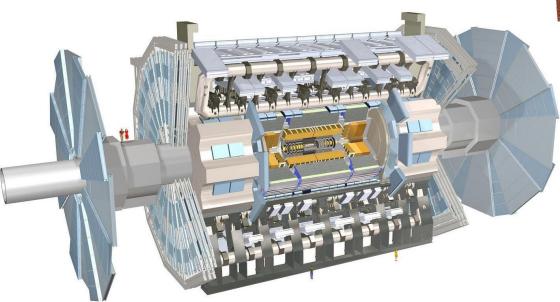
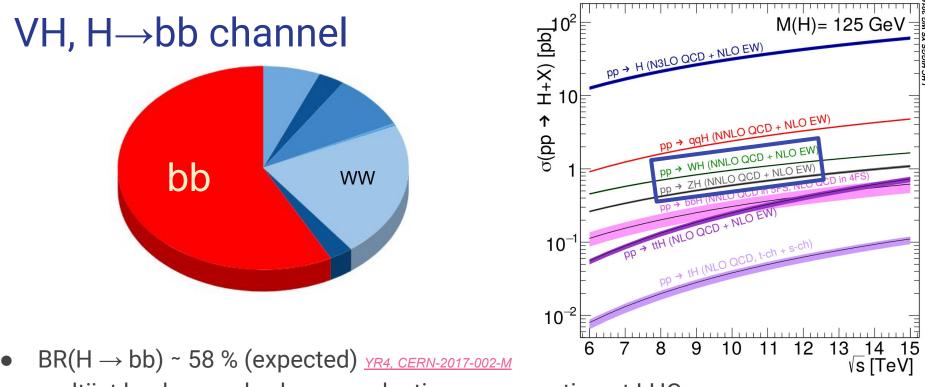
Studies on $H \rightarrow b\overline{b}$ decays and VH production with the ATLAS detector

Milène Calvetti

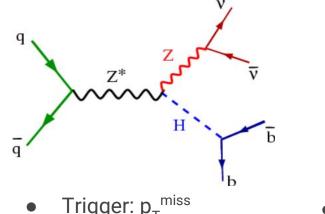

Istituto Nazionale di Fisica Nucleare

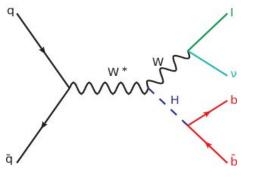


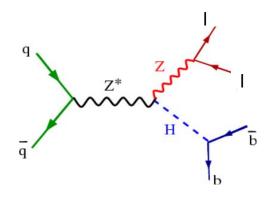


Università di Pisa

The ATLAS detector


- $\bullet \quad \text{multijet background} \rightarrow \text{large production cross section at LHC}$
 - \rightarrow background rejection impossible in pp \rightarrow H
- Associated production VH (V=W o Z),

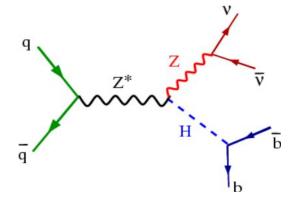

V leptonic decay \rightarrow clear signature, easier background rejection


Event classification

Three topologies studied (0, 1, 2 charged leptons):

- $H \rightarrow bb Z \rightarrow vv$
- $H \rightarrow bb W \rightarrow l\nu (l=e,\mu)$
- $H \rightarrow bb Z \rightarrow II (I=e, \mu)$

Trigger: p_{T}^{miss}

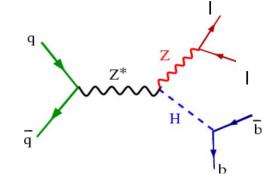

Trigger: electron or p_{τ}^{miss}

Trigger: lepton

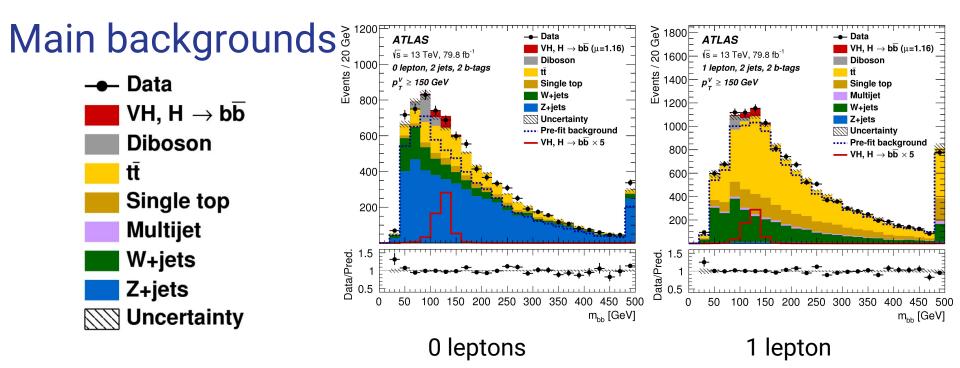
Event selection

Higgs decay product selection

- 2 or 3 jets
- exactly two **b-jet**



q w* H b



- 0 charged leptons
- Angular selections → reduce multijet background

- p_T^W > 150 GeV
- Only 1 charged lepton

- p_T^Z > 75 GeV
- 2 charged leptons
- Z mass: 81 < m_{II} < 101 GeV

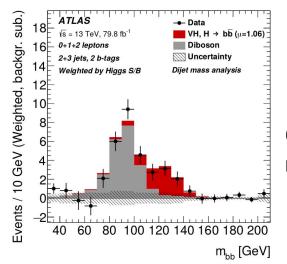

- Z+heavy flavour, W+heavy flavour → dedicated control region in 1-lep channel
- top (ttbar e single-top) → dedicated control region in 2-lep channel
- Multijet → suppressed with dedicated cuts, estimated with data-driven methods in 1-lep channel
- WZ, ZZ \rightarrow final state similar to WH, estimated from simulation

Multivariate analysis

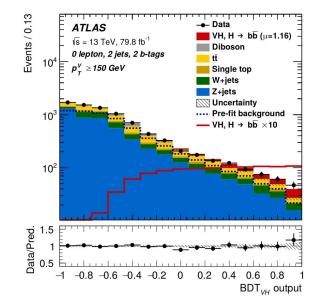
Variable	$0 ext{-lepton}$	1-lepton	2-lepton
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(ec{b}_1,ec{b}_2)$	×	×	×
$ \Delta\eta(ec{b}_1,ec{b}_2) $	×		
$\Delta \phi (ec V, b ec b)$	×	×	×
$ \Delta\eta(ec V, ec b ec b) $			×
$m_{ m eff}$	\times		
$\min[\Delta \phi(ec{\ell},ec{b})]$		×	
$m^W_{ m T}$		×	
$m_{\ell\ell}$			×
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×
$m_{ m top}$		×	
$m_{ m top} \ \Delta Y(ec V, bec b) $		×	
	Only in 3-jet events		
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

Boosted Decision Tree (BDT):

- Input: kinematic variables
- Output: BDT optimised in signal/background separation

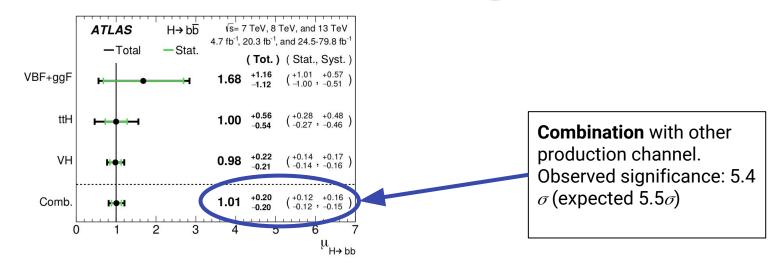


Multivariate analysis

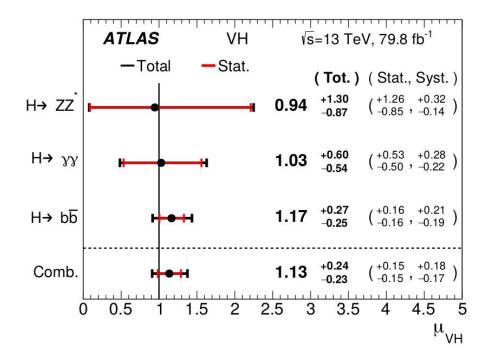

Signal extracted using likelihood fit to data using templates.

Signal strength $\mu = \frac{\sigma_{\text{measured}}}{\sigma_{\text{expected(SM)}}}$

Systematic uncertainties (experimental and modelisation) described in the likelihood $\mathcal{L}(\mu, \theta)$ with nuisance parameters Θ



Cut-based selection to validate the multivariate analysis


80fb⁻¹ - First H \rightarrow bb observation!

Signal strength	Signal strength	Significance	
		Exp.	Obs.
0-lepton	$1.04^{+0.34}_{-0.32}$	3.1	3.3
1-lepton	$1.09^{+0.46}_{-0.42}$	2.4	2.6
2-lepton	$1.38^{+0.46}_{-0.42}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16^{+0.27}_{-0.25}$	4.3	4.9

Observation of the VH production

Study of the VH production \rightarrow combination with searches in other decay channels

Channel	Significance				
Chamler	Exp.	Obs.			
$H \to ZZ^* \to 4\ell$	1.1	1.1			
$H ightarrow \gamma \gamma$	1.9	1.9			
$H \rightarrow b\bar{b}$	4.3	4.9			
VH combined	4.8	5.3			
	X				
Main contribution from H→bb					

What's next?

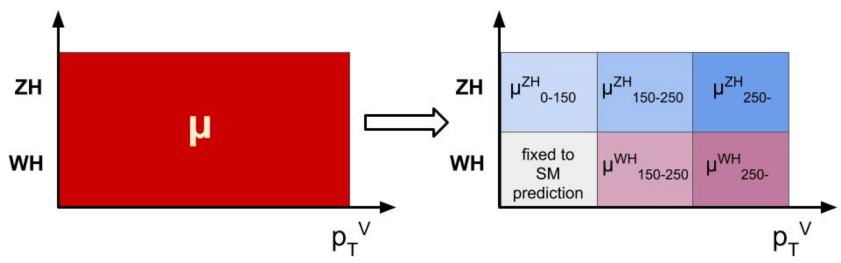
Beyond the standard model: effective field theories

$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} c_i^{(6)} O_i^{(6)} / \Lambda^2$					
Operator	Expression	HEL coefficient	Vertices		
O_g	$ H ^2 G^A_{\mu u} G^{A\mu u}$	$cG = \frac{m_W^2}{g_s^2} \bar{c}_g$ $cA = \frac{m_W^2}{g'^2} \bar{c}_\gamma$	Hgg		
O_{γ}	$ H ^2 B_{\mu u} B^{\mu u}$	$cA = \frac{m_W^2}{g'^2} \bar{c}_{\gamma}$	$H\gamma\gamma, HZZ$		
O_u	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$	$cu = v^2 \bar{c}_u$	Htī		
O_{HW}	$i \left(D^{\mu} H \right)^{\dagger} \sigma^{a} \left(D^{\nu} H \right) W^{a}_{\mu \nu}$	$cHW = \frac{m_W^2}{g} \bar{c}_{HW}$	HWW, HZZ		
O_{HB}	$i \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu \nu}$	$cHB = \frac{m_W^2}{g'} \bar{c}_{HB}$	HZZ		
O_W	$i \left(H^{\dagger} \sigma^a D^{\mu} H ight) D^{\nu} W^a_{\mu u}$	$cWW = \frac{m_W^2}{g} \bar{c}_W$	HWW, HZZ		
OB	$i\left(H^{\dagger}D^{\mu}H ight)\partial^{ u}B_{\mu u}$	$cB = \frac{m_W^2}{g'} \bar{c}_B$	HZZ		

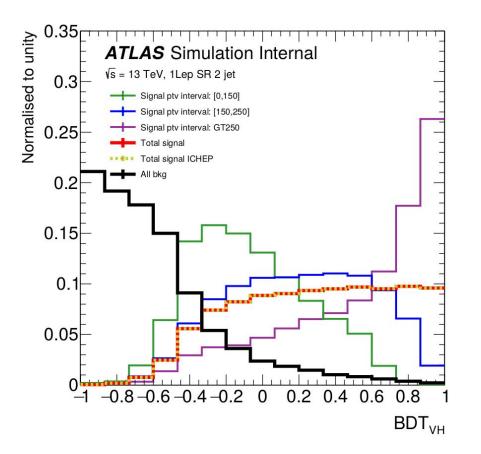
11

10

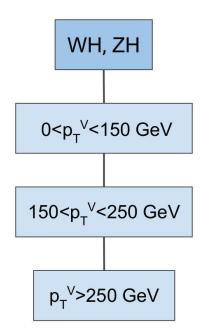
Physics beyond the standard model (e.g. new resonance) → possible deviations


Higher deviations at high energies

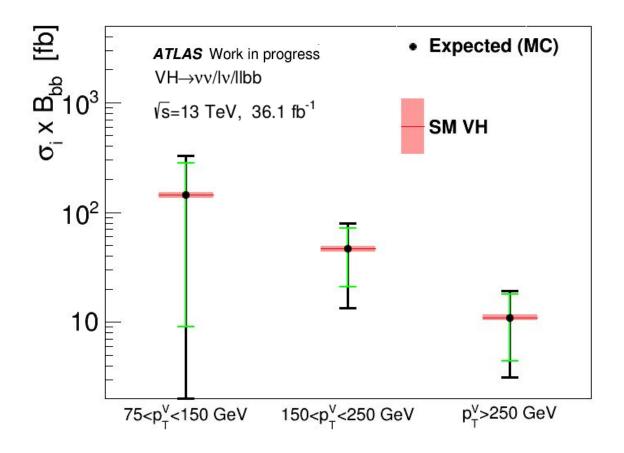
- Design a new analysis optimized for BSM studies
- Exploit the current analysis and isolate possible BSM deviations

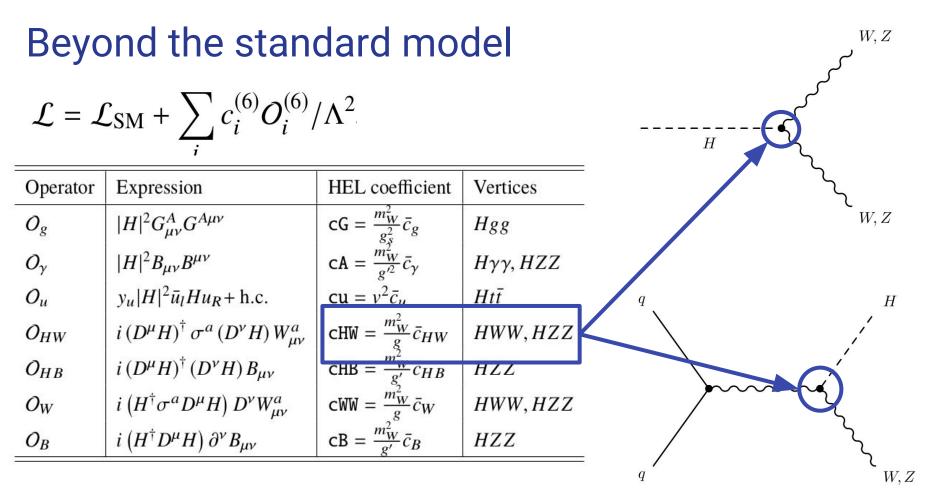

Simplified template cross sections (STXS)

- same event selection and background modelisation;
- splitted signal.

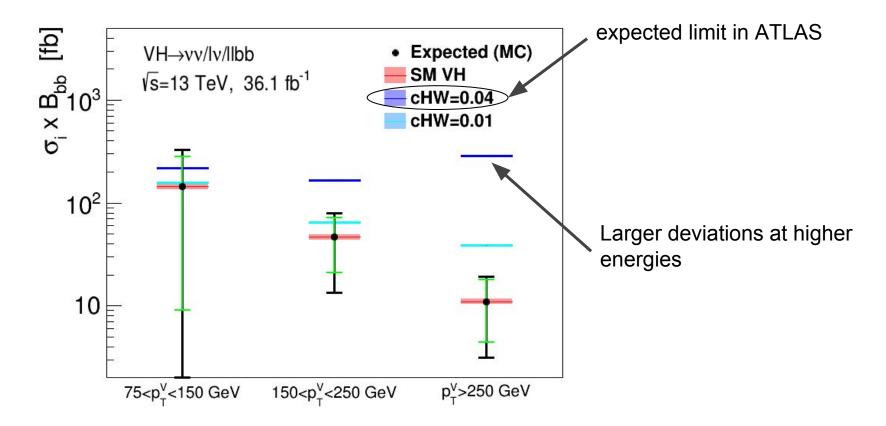


- isolate possible BSM effects
- easy combination with other decay channels.

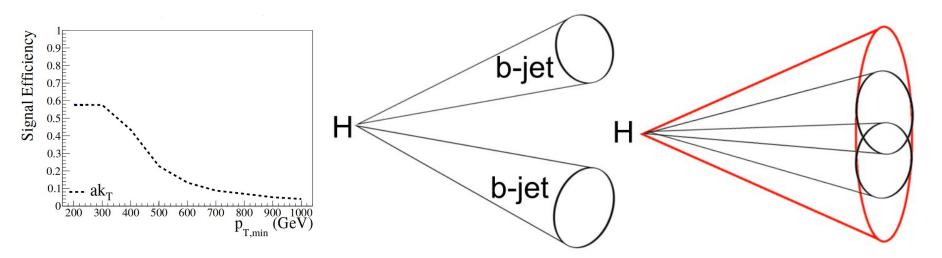

Studies on BDT shape



• Using the BDT shape it is possible to distinguish the different contributions



Preliminary studies, expected results

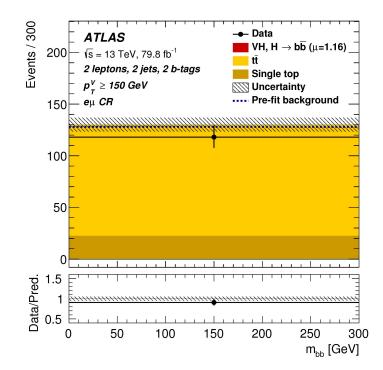


Beyond the standard model

High energy events

- currently working on 80 fb⁻¹; 120-150 fb⁻¹ available at the end of this year, could add a very high energy bin
- Possibility to add a dedicated event selection for high energy events

Preliminary studies in 1 lepton channel S/VB ~ 1.8


Conclusions

- Recent observation of $H \rightarrow bb$ decay!
- Recent observation of VH production!

- Exploit the current analysis to study BSM effects \rightarrow STXS differential in $p_{_T}{}^V$
- Improvements with 120-150 fb⁻¹?
- Future dedicated selection for high energy events

Control regions

top control region: leptons with opposite flavour

