Study and development of advanced quantitative Magnetic Resonance Imaging techniques for subvoxel quantification

Candidate: Matteo Cencini Supervisor: Prof. Michela Tosetti

Pre-thesis discussion

Pisa, 22/10/2018

IRCCS Fondazione Stella Maris

Magnetic Resonance Imaging

Versatile imaging technique based on the interaction of nuclear spins within the human body with magnetic fields

- ✓ It is non invasive! (non-ionizing radiation)
- Still qualitative, quantitative imaging is not routinely used in clinic
- Most quantitative techniques assume one tissue per voxel

Spin $\boldsymbol{J} \neq 0 \Rightarrow \boldsymbol{\mu} = \gamma \boldsymbol{J}$

Spin ensemble

IRCCS Fondazione Stella Maris

IRCCS Fondazione Stella Maris

UNIVERSITÀ DI PISA

UNIVERSITÀ DI PISA

IRCCS Fondazione Stella Maris

IRCCS Fondazione Stella Maris

After excitation: relaxation!

- Spin-lattice relaxation: exchange of energy with the environment
- **Spin-spin relaxation:** dephasing of the spins on transverse plane (no energy loss)

Bloch
$$\frac{\partial \boldsymbol{m}}{\partial t} = \gamma \boldsymbol{m} \times \boldsymbol{B}_0 + \frac{1}{T_1}(m_0 - m_z)\hat{z} + \frac{1}{T_2}\boldsymbol{m}_\perp$$

- **T1**: spin-lattice relaxation time
- **T2**: spin-spin relaxation time

$$s = s(t; T1, T2, B, ...)$$

After excitation: relaxation!

- Spin-lattice relaxation: exchange of energy with the environment
- **Spin-spin relaxation:** dephasing of the spins on transverse plane (no energy loss)

Bloch
$$\frac{\partial \boldsymbol{m}}{\partial t} = \gamma \boldsymbol{m} \times \boldsymbol{B}_{0} + \frac{1}{T_{1}}(m_{0} - m_{z})\hat{z} + \frac{1}{T_{2}}\boldsymbol{m}_{\perp}$$

- T1: spin-lattice relaxation time
- **T2**: spin-spin relaxation time

$$s = s(t; T1, T2, B, ...)$$

TE: echo time

IRCCS Fondazione Stella Maris

TR: repetition time

TE: echo time

IRCCS Fondazione Stella Maris

TR: repetition time

TE: echo time

IRCCS Fondazione Stella Maris

Magnetic Resonance Fingerprinting (D Ma et al. Nature, 2013)

IRCCS Fondazione Stella Maris

Magnetic Resonance Fingerprinting (D Ma et al. Nature, 2013)

Magnetic Resonance Fingerprinting (D Ma et al. Nature, 2013)

Coppo et al. (2016)

ALL STREET

IRCCS Fondazione Stella Maris

Magnetic Resonance Fingerprinting (D Ma *et al. Nature*, 2013)

Coppo et al. (2016)

IRCCS Fondazione Stella Maris

For each acquired signal \hat{x} :

1. Find max $|D' \cdot \hat{x}^T|$ D' = normalized dictionary

IRCCS Fondazione Stella Maris

For each acquired signal \hat{x} :

- 1. Find max $|D' \cdot \hat{x}^T|$ D' = normalized dictionary
- 2. Find corresponding parameters (T1,T2,...)

For each acquired signal \hat{x} :

- 1. Find max $|D' \cdot \hat{x}^T|$ D' = normalized dictionary
- 2. Find corresponding parameters (T1,T2,...)
- 3. Calculate PD as $PD = \max |D' \cdot \hat{x}^T| / |D|$

	Number of patterns in the dictionary	Intel [®] Xeon [®] processor E5-2600 v4 (48 cpu)	NVIDIA Tesla K80 GPU
1. MR Relaxation times only	250 000 (each 10 complex singles)	615 s	340 s
2. Adding fat fraction estimations	3 186 414 (each 30 complex singles)	6.5 hours	3 hours
3. Adding two blood perfusion parameters	3 e8 (each 30 complex singles)	27 days (estimated)	14 days (estimated)
4. Adding diffusion tensor estimations	1.56 e10 (each 10 complex singles)	3.5 years (estimated)	1.5 years (estimated)

Benchmark values (time per each exam) for reconstructing 3D MR Fingerprinting on a brain using a 128x128x128 image matrix

IRCCS Fondazione Stella Maris

Università di Pisa

10

Magnetic Resonance Fingerprinting: multicomponent

IRCCS Fondazione Stella Maris

My work: fat water separation

Problems due to fat presence:

- Brighter than water (short T1)
- Displacement in the image (different chemical shift, i.e. different resonant frequency)

source: mriquestion.com

My work: fat water separation

Problems due to fat presence:

- Brighter than water (short T1)
- Displacement in the image (different chemical shift, i.e. different resonant frequency)

source: mriquestion.com

Fat quantification: can offer useful diagnostic information (e.g. liver diseases)

Conventional fat-water imaging

Conventional Fat suppression

T1 based:

- + Fast and efficient suppression
- No fat quantification

Chemical shift based:

- + Allow fat quantification
- Increased acquisition time

IRCCS Fondazione Stella Maris

Acquisition pattern

Acquisition:

- Inversion pulse => <u>add T1 sensitivity</u>
- Variable TE/TR (TE/TR min: 1.8/9 ms; TE/TR max: 4.8/12 ms) => add chemical shift sensitivity

Acquisition Time: 16s per slice

Acquisition pattern

Signal model

Simple two component model

Dictionary Creation:

- 1. Pure water dictionary $D_w(T_1w, B_1, \Delta f)$
- 2. Pure fat dictionary $D_f(T_1f, B_1, \Delta f + 220 Hz)$
- 3. Linear combinations $D = (1 ff)D_w + ffD_f$

ff: fat fraction

Validation studies

- In-Vitro: Vials filled with fat-water mixtures at different concentration (0%, 25%, 50%, 80%, 100%) + agarose gel with different T1
- In-Vivo: Knee joint of a healthy human volunteer

UNIVERSITÀ DI PISA

Results: phantom

IRCCS Fondazione Stella Maris

Results: in vivo fat fraction

Reference

MRF

IRCCS Fondazione Stella Maris

UNIVERSITÀ DI PISA

Results: in vivo T1

Water T1 [ms]

Fat T1 [ms]

Fat water: conclusions

• Consistent Fat Fraction and T1 maps in 16s/slice

 Combine T1-based and chemical shift-based fat water separation approach => more robust!

My work: PET attenuation correction

My work: PET attenuation correction

$$I = I_0 \exp(-\int \mu(x) dx)$$

Underestimation of tracer uptake!

Scattering or absorption of 511 KeV photon

My work: PET attenuation correction

$$I = I_0 \exp(-\int \mu(x) dx)$$

Underestimation of tracer uptake!

Scattering or absorption of 511 KeV photon

IRCCS Fondazione Stella Maris

Conventional AC

- **PET/CT:** photon attenuation is readily estimated from CT Hounsfield units
- PET/MRI: attenuation correction rely on MRI segmentations: anatomic models => not subject specific OR ultra-short echo times (UTE) to separate the short T2 in bone from longer T2 in soft tissues + Dixon techniques => bone, fat and water maps => require multiple acquisitions at high resolution!!!

Signal model

Tissue properties:

- Water: relatively long T1 and T2; on resonance
- Fat: short T1; ~3.5 ppm chemical shift
- Bone: ultra-short T2

Air properties:

Totally incoherent signal

(low correlation with each

dictionary entry!)

Acquisition pattern

Acquisition pattern:

- UTE + Variable TR/TE
 (TE min: 400µs; TE max: 4.8 ms)
- MR Scanner: GE HDxt 1.5T
- 3D acquisition
- Resolution: 4mm isotropic
- Acquisition time: 123s

UNIVERSITÀ DI PISA

24

Dictionary

MRF

Dictionary: simulations for a many different T1s,T2s and Δ B0s

ARISTOMRAC

Dictionary: simulation for 3 pools (water, fat, bone each with sparse T1, T2, Δ B0 values); many combinations of these tissues according to many different weightings

Air: classified by threshold on the matching cost function

UNIVERSITÀ DI PISA

Validation studies

Phantom:

- Bovine bone in a 0.6% agar gel.
- Four oil-water emulsions (nominal concentrations: 25%, 50%, 80%, 100%

Ground truth maps:

segmentation/classification of a high resolution T1 image + resampling to 4mm isotropic

Nominal values

In-vitro experiment: tissue fraction maps

Università di Pisa

27

In-vitro experiment: tissue fraction maps

In-vivo experiment: tissue fraction maps

In-vivo experiment: tissue fraction maps

IRCCS Fondazione Stella Maris

In-vivo experiment: attenuation map

IRCCS Fondazione Stella Maris

Conclusion

• Correct classification of tissues directly at PET resolution within a single acquisition (short scan time!)

• Must be validated by comparison with gold standard (CT)

IRCCS Fondazione Stella Maris

Future perspectives

 Extend the multicomponent approach to other problems (e.g. CSF suppression)

 Try to circumvent the computational burden of increasing dimensionality to add more parameters (e.g. T2)

Thank you for your attention!

Università di Pisa

IRCCS Fondazione Stella Maris

Backup

IRCCS Fondazione Stella Maris

$$B = B_0 \hat{z} + Gr \Rightarrow \omega = \omega(r)$$
Gradient
fields

IRCCS Fondazione Stella Maris

$$B = B_0 \hat{z} + Gr \Rightarrow \omega = \omega(r)$$
Gradient
fields
$$s(t) \propto \int dV o(r) \exp(-ir \int dt$$

$$s(t) \propto \int_{V} dV \rho(r) \exp(-i\gamma) dt G(t)r$$

Spin spatial distribution

$$B = B_0 \hat{z} + Gr \Rightarrow \omega = \omega(r)$$

Gradient
fields
$$s(t) \propto \int_V \frac{dV\rho(r)}{\rho(r)} \exp(-i\gamma \int dt G(t)r)$$

Spin spatial
distribution
$$\overset{\text{def}}{=} k$$

IRCCS Fondazione Stella Maris

$$B = B_0 \hat{z} + Gr \Rightarrow \omega = \omega(r)$$

Gradient
fields

$$s(t) \propto \int_V \frac{dV \rho(r) \exp(-i\gamma \int dt G(t) r)}{\sum_{\substack{\text{Spin spatial} \\ \text{distribution}}}} \int_{\frac{def}{k}} k$$

$$s(k) \propto \int_V \frac{dV \rho(r) \exp(-ikr) = FT(\rho(r))}{\sum_{\substack{n=1\\ n \neq n}}}$$

IRCCS Fondazione Stella Maris

