



## **PHOTONIC CRYSTALS**

Gaia Ciampalini <sup>1,2</sup> <sup>1</sup>University of Pisa, <sup>2</sup>Graphene Labs, Istituto Italiano di Tecnologia CRAPHENE CRAPHENE

ISTITUTO ITALIANO DI TECNOLOGIA



## Outline

- Introduction to photonic crystals
- The master equation
- Photonic Bands
- Defects
- Applications

## Photonic crystals are periodic dielectric structures which are to photon waves as crystalline solids are to electron waves

| Material          | Description                    | Waves                                |
|-------------------|--------------------------------|--------------------------------------|
| Crystalline solid | Crystalline atomic lattice     | Electron Waves                       |
|                   |                                | $\Psi(ec{r})$                        |
| Photonic crystal  | Periodic dielectric structures | Photonic Waves                       |
|                   |                                | $\vec{H}(\vec{r}), \vec{E}(\vec{r})$ |

## Periodicity appears in the refractive index



Classical photonics: electromagnetic waves that propagate according to Maxwell equations

Wavelength of light  $\lambda \sim a$ 

 $n(\vec{r} + \vec{R}) = n(\vec{r}) \quad \forall \vec{R} \epsilon \text{ direct lattice}$ 

 $n = \sqrt{\varepsilon_r \mu_r}$  Optical regime  $\mu_r(\omega) \sim 1$ 

### Periodic permittivity $\varepsilon(\vec{r})$

Periodicity leads to constructive and destructive interference

## Periodic permittivity and Maxwell equations are the only ingredients needed to describe the system

**Transversality conditions**  

$$\vec{\nabla} \cdot \vec{B} = 0$$
  $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$   
 $\vec{\nabla} \cdot \vec{D} = 0$   $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$ 

$$\vec{\nabla}^2 \vec{H}(\vec{r}) + \left(\frac{\omega}{c}\right)^2 \varepsilon(\vec{r}) \vec{H}(\vec{r}) = 0$$

$$\vec{D}(\vec{r}) = \varepsilon(\vec{r})\vec{E}(\vec{r})$$
$$\vec{B}(\vec{r}) = \vec{H}(\vec{r})$$

 $\frac{\text{Monochromatic fields}}{\vec{E}(\vec{r},t) = \vec{E}(\vec{r})e^{-i\omega t}}$  $\vec{H}(\vec{r},t) = \vec{H}(\vec{r})e^{-i\omega t}$ 

## There is a strong analogy between the Helmholtz Equation and the Schroedinger equation

#### **Helmholtz Equation**

#### **Schroedinger Equation**



$$E(k)$$
  
 $\pm 3\pi/a$   
 $\pm 2\pi/a$   
 $\pm \pi/a$   
 $\pm \pi/a$   
 $\pm \pi/a$ 

$$\vec{\nabla}^2 \vec{H}(\vec{r}) + \left(\frac{\omega}{c}\right)^2 \varepsilon(\vec{r}) \vec{H}(\vec{r}) = 0$$

$$\frac{-\hbar^2}{2m}\vec{\nabla}^2\Psi(\vec{r}) + (V(\vec{r}) - E)\Psi(\vec{r}) = 0$$

## The generalized eigenvalue problem can be recast in the form of a regular eigenvalue problem

#### **Master Equation**

$$\vec{\nabla} \times \left(\frac{1}{\varepsilon(\vec{r})}\vec{\nabla} \times \vec{H}(r)\right) = \left(\frac{\omega}{c}\right)^2 \vec{H}(\vec{r})$$

Introducing the Maxwell operator  $\theta = \vec{\nabla} \times \left(\frac{1}{\varepsilon(\vec{r})} \vec{\nabla} \times\right)$ 

$$\theta \vec{H}(\vec{r}) = \left(\frac{\omega}{c}\right)^2 \vec{H}(\vec{r})$$

## The system can be studied in terms of symmetries

 $\varepsilon(\vec{r})$  is invariant under translation

Eigenfunctions  

$$\overrightarrow{H}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}\vec{u}(\vec{r})$$

$$\overrightarrow{u}(\vec{r}+\vec{R}) = \vec{u}(\vec{r}) \quad \forall \vec{R}\epsilon \text{ direct lattice}$$

Solutions can be represented in the reciprocal lattice

Nonreduntant values for the wavevector k **First Brillouin zone** 



## Folding in the first Brillouin Zone is a consequence of periodicity



Strong analogy to the semiconductor band structure

## The amplitude of the photonic bandgap depends on the permittivity differences between the two media

**Photonic bandgap**: frequencies that cannot propagate into the material



Band structure can be calculated with numerical techniques

### The space of all the solution splits into two distinct subspaces





## As semiconductors photonic crystals can be 'doped' inserting defects





Inserting extra dielectric material (DONOR ATOMS)

Removing some dielectric material from the unit cell (ACCEPTOR ATOMS)

## **Defects broke the translational symmetry**



Possibility to guide and trap light with great efficiency

Many wavelength away from the defect, the modes should look similar to the modes of a perfect crystal

**Defects** permit **localized modes** to exist, with frequencies inside the photonic band gap



# Controlling and manipulating light flow is the main aim of photonic crystals

- <u>Control of spontaneous emission</u>
- Waveguides
- Mirrors
- Microcavities
- Light emitters
- Photonic circuits







## Photonic crystals exist also in nature



Eileen Armstrong and Colm O'Dwyer. J. Mater. Chem. C, 2015, 3, 6109-6143

## Bibliography

- J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, *Photonic Crystals Molding the Flow of Light*
- J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gerard, *Photonic Crystals –Towards nanoscale photonic devices*
- E.Yablonovitch (1994) Photonic Crystals, Journal of modern optics 41:2, 173-194