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Brief overview of CDT
Causal Dynamical Triangulations (CDT): non-perturbative
Monte-Carlo approach to Quantum Gravity.

• Simplicial manifolds approximate
smooth ones;

• A causality condition is enforced by
considering only foliated manifolds
(fixed slice topology, S3 here);

• The action is the Regge discretization
of the Einstein-Hilbert one;

• Wick rotation of timelike links to the
Euclidean. Luckily no sign problem!

• Continuum limit: search for a second
order critical point in the phase diagram.

Reviews: J. Ambjorn et al., Phys.Rept. 519 (2012)

R. Loll, 1905.08669 [hep-th] (2019)



Regge formalism: action discretization

Also the EH action must be discretized accordingly (gµν → T ):

SEH [gµν ] =
1

16πG

[∫
ddx

√
|g |R︸ ︷︷ ︸

Total curvature

−2Λ

∫
ddx

√
|g |︸ ︷︷ ︸

Total volume

]

⇓ discretization ⇓

SRegge [T ] =
1

16πG

[ ∑
σ(d−2)∈T

2εσ(d−2)Vσ(d−2) − 2Λ
∑
σ(d)∈T

Vσ(d)

]
,

where Vσ(k) is the k-volume of the simplex σ(k).

Wick-rotation iSLor (α)→ −SEuc(−α)

=⇒ Monte-Carlo sampling P[T ] ≡ 1
Z exp (−SEuc [T ])



Monte-Carlo: sum over causal geometries

Configuration space in CDT: triangulations with causal structure

Lorentzian (causal) structure
on T enforced by means of a
foliation of spatial slices of
constant proper time.

Path-integral over causal geometries/triangulations T using
Monte-Carlo sampling by performing local updates. E.g., in 2D:

flipping timelike link creating/removing vertex



Sketch of 4d-CDT phase diagram
k0 and ∆ parametrize the theory (related to G and Λ)

phase spatial volume per slice

A:

B:

CdS/Cb:

−−−−−−→
Time

Possible 2nd order lines have been found.
CdS spatial volume profiles compatible with de Sitter spacetime.

J. Ambjorn et al. PRL 107 (2011), PRD 95 (2017) no.12



spectral methods



Spectral graph analysis of CDT slices

Spectral analysis

In general, the analysis of eigenvalues and eigenvector of the
Laplace-Beltrami operator: −∇2.

Observation
Spatial slices in CDT are made by identical (d − 1)-simplexes
=⇒ a d-regular undirected graph is associated to any spatial slice.

• −∇2 becomes the Laplace matrix
L of the graph dual to the sliced
triangulation;

• Eigenvalue problem L~f = λ~f solved
by numerical routines.

2D slice and its dual graph



Physical interpretation of LB eigenvalues and eigenvectors

Heat/diffusion equation on a manifold (or graph) M:

∂tu(x ; t)−∆u(x ; t) = 0 .

General solution in a basis
{
en
}

of LB eigenvectors (λn ≤ λn+1):

u(x ; t) =

|σM |−1∑
n=0

e−λnt ũn(0)en(x) .

observations:

• λn is the diffusion rate for the (eigen)mode en(x)

• smallest eigenvalues ↔ slowest diffusion directions.

• a large spectral gap λ1 implies a fast overall diffusion,
geometrically meaning a highly connected graph.



Weyl’s law and effective dimension

For a manifold M with LB spectrum σM define:
n(λ) ≡

∑
λ∈σM

θ(λ− λ) = “number of eigenvalues below λ”.

Weyl’s law

Well known asymptotic result from spectral geometry:

n(λ) ∼ ωd

(2π)d
Vλd/2 ,

being ωd the volume of a unit d-ball and V the manifold volume.

Motivated by Weyl’s law we define the effective dimension:

dEFF (λ) ≡ 2
d log(n/V )

d log λ
.



A toy model: toroidal lattice

Consider a 3-d periodic lattice with sizes Lx × Ly × Lz .

eigenvalues:

λ′~m = 4π2

(
m2

x

L2x
+

m2
y

L2y
+

m2
z

L2z

)
,

with mi ∈ (−Li/2, Li/2 ] ∩ Z .
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• Three regimes observed for Lx � Ly � Lz with dEFF = 1, 2, 3.

• Position of knees related to the scale of dimensional transition.



numerical results



Scalings and effective dimension for different phases
G.C. and M. D’Elia [PRD 97, 124022 (2018)]

dEFF (λ) ≡ 2
d log(n/V )

d log λ
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small λ (large scale) behavior:

• λ1 → 0 and dEFF < 3 for CdS and A phases (fractional);

• λ1 → const. > 0 and dEFF →∞ for the B phase.



The bifurcation phase Cb

Comparisons between CdS and Cb low lying spectra:
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Slices can be classified into highly connected (large λ1) and
sparsely connected (small λ1) geometries.
These classes alternate in Euclidean time.



Spectral gap in the phase diagram
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Going from Cb to CdS phase the spectral gap closes.
=⇒ we use λ1 as an order parameter for the Cb|CdS transition.



Thermodynamical limits for Cb branches

• B-type and dS-type slice classes
can be separately analyzed not too
close the transition (class mixing).

• As for the B phase, we observe a
set of distinct scales, persisting in
the infinite volume limit 〈λn〉∞.

λn have dimension of a mass squared,
so they seem related to a set of length

scales ξn ≡ 〈λn〉−1/2∞ .
(i.e., the wavelength of n-th mode)

G.C., M. D’Elia and A. Ferraro [arXiv:1903.00430]
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Critical behavior

Approaching the transition from the Cb phase we observe a power
law behavior with critical index ν:

〈λn〉∞ = An(∆c −∆)2ν . =⇒ ξn = Bn(∆c −∆)−ν

• k0 = 0.75 (χ2
rid ' 31/26):

∆c = 0.635(14), ν = 0.55(4).

• k0 = 1.5 (χ2
rid ' 6/14):

∆c = 0.544(36), ν = 0.82(12).
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All the distinct length scales ξn are compatible with a common
critical exponent ν, as expected from a lattice field theory ap-
proaching the continuum limit.



Conclusions
Present work:

• In order to solve the lack of observables, we introduced the
study of eigenvalues of the Laplace-Beltrami operator, having
intuitive geometric interpretation.

• The spectral gap λ1 of slices is a good order parameter for
the Cb|CdS transition. G.C. and M. D’Elia [PRD 97, 124022 (2018)]

• We investigated further the properties of the Cb phase and
the Cb|CdS transition: we found a hierarchy of length scales
diverging with a power law, trademark of a second order
phase transition. G.C., M. D’Elia and A. Ferraro [arXiv:1903.00430]

Work in progress:

• Analysis of the eigenvectors, containing much information
worth to be investigated (e.g., mode localization).

• Spectral analysis of full space-time triangulated manifolds.

• Other projects: adding f (R) terms in the action, minimal
coupling with gauge theories.



additional slides



Wick rotated action in 4D

At the end of the day [Ambjörn et al., arXiv:1203.3591]:

SCDT = −k0N0 + k4N4 + ∆(N4 + N
(4,1)
4 − 6N0)

• New parameters: (k0, k4,∆), related respectively to G , Λ and
α.

• New variables: N0, N4 and N
(4,1)
4 , counting the total numbers

of vertices, pentachorons and type-(4, 1)/(1, 4) pentachorons
respectively (T dependence omitted).

It is convenient to “fix” the total spacetime volume N4 = V by
fine-tuning k4 =⇒ actually free parameters (k0,∆,V ).

Simulations at different volumes V allow finite-size scaling analysis.



Laplacian embedding

Laplacian embedding: embedding of graph in k-dimensional
(Euclidean) space, solution to the optimization problem:

min
~f 1,...,~f k

{ ∑
(v ,w)∈E

k∑
s=1

[f s(v)− f s(w)]2 | ~f s · ~f p = δs,p, ~f
s ·~1 = 0 ∀s, p = 1, . . . , k

}
,

where for each vertex v ∈ V the value f s(v) is its s-th coordinate
in the embedding.

The solution {f s(v)}ks=1 is exactly the (orthonormal) set of the
first k eigenvectors of the Laplace matrix {es(v)}ks=1!



Laplacian embedding: example torus T 2 = S1 × S1

For each graph-vertex v ∈ V plot the tuple of coordinates:

2D: (e1(v), e2(v)) ∈ R2

3D: (e1(v), e2(v), e3(v)) ∈ R3

(a) 2D embedding (b) 3D projected embedding



Laplacian embedding of spatial slices in CdS phase

tr -1 0 1

2D

3D

The first three eigenstates are not enough to probe the geometry
of substructures



3D Laplacian embedding of T 3 torus

T 3 ∼= T 2 × S1 ∼= S1 × S1 × S1



Result: spectral clustering of CdS spatial slices

Spectral clustering: recursive application of min-cut procedure

Qualitative picture (2D)

Observation: fractality

Self-similar filamentous structures in CdS phase (S3 topology)



Spectral dimension DS

Computed from the return probability for random-walks on

manifold or graph: Pr (τ) ∝ τ−
DS
2 =⇒ DS(τ) ≡ −2d logPr (τ)

d log τ .

• Usual integer value on regular spaces: e.g. DS(τ) = d on Rd

• τ -independent fractional value on true fractals

• τ -dependent fractional value in general (some scale involved)

Equivalent definition of return probability: Pr = 1
|V |
∑

k e
−λnt

=⇒ Nice interpretation of return probability in terms of diffusion
processes (random-walks): smaller eigenvalues ↔ slower modes.
The smallest non-zero eigenvalue λ1 represents the algebraic
connectivity of the graph.



The spectral dimension on CdS slices

Compare Pr obtained by explicit diffusion processes or by the LB
eigenspectrum
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fractional value DS(τ) ' 1.5 =⇒ fractal distribution of space.
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