

DIFFUSION REGION'S STRUCTURE DURING MAGNETIC RECONNECTION IN NEAR-EARTH SPACE

Giulia Cozzani

Studente del secondo anno in co-tutela

École Polytechnique, Palaiseau, France LPP, Laboratoire de Physique des Plasmas, France Università di Pisa

Supervisors: Dr. P. Canu, Dr. A. Retinò, Prof. F. Califano

October 22, 2018

うして ふゆ く は く は く む く し く

MAGNETIC RECONNECTION: A FUNDAMENTAL

PROCESS

Magnetic reconnection induces topology change of the magnetic field and energy release

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Magnetic reconnection induces topology change of the magnetic field and energy release

Magnetic reconnection induces topology change of the magnetic field and energy release

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Magnetic reconnection induces topology change of the magnetic field and energy release

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Dynamics and structure of the EDR are largely unknown

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

AURADINALINALIN E 1990

An ubiquitous process

MAGNETOPAUSE RECONNECTION

 Mixing of solar wind and magnetospheric plasma

►
$$d_{IDR} \sim d_i \sim 80 \ km$$

► $d_{EDR} \sim d_e \sim 2 \ km$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

MAGNETOSPHERIC MULTISCALE (MMS) MISSION IS DESIGNED TO STUDY MAGNETIC RECONNECTION IN THE NEAR-EARTH SPACE

MAGNETOSPHERIC MULTISCALE (MMS) MISSION IS DESIGNED

TO STUDY MAGNETIC RECONNECTION IN THE NEAR-EARTH

SPACE

Cluster resolution: 250 ms. MMS resolution: 30 ms (electrons) and 150 ms (protons)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LOOKING FOR AN ELECTRON DIFFUSION REGION ENCOUNTER

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 のへで

MAGNETOPAUSE'S LOCAL COORDINATE SYSTEM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

MAGNETIC RECONNECTION EVENT

DQ (P

DIFFERENCES AMONG SPACECRAFT OBSERVATIONS ARE RECORDED DURING THE EDR ENCOUNTER

◆注▶ ◆注▶ 注 のへで

DIFFERENCES AMONG SPACECRAFT OBSERVATIONS ARE

RECORDED DURING THE EDR ENCOUNTER: ELECTRON

DISTRIBUTION FUNCTIONS

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

DIFFERENCES AMONG SPACECRAFT OBSERVATIONS ARE

RECORDED DURING THE EDR ENCOUNTER: ELECTRON

DISTRIBUTION FUNCTIONS

EDR is a complex and structured region

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Cozzani et al., submitted

EDR TURBULENCE IS OBSERVED ALSO IN SIMULATIONS

Price et al., GRL, 2016

Jara-Almonte et al., PoP, 2014

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ(で)

EDR TURBULENCE IS OBSERVED ALSO IN

SIMULATIONS

Swisdak et al., ArXiv, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

PIC code

EDR TURBULENCE IS OBSERVED ALSO IN

SIMULATIONS

PIC code

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

EDR TURBULENCE IS OBSERVED ALSO IN

SIMULATIONS

PIC code

We need a high resolution, low noise code to model the EDR $\,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

The Vlasov-Darwin code

$$\begin{cases} \partial_t f_{\alpha} + (\mathbf{v}_{\alpha} \cdot \nabla) f_{\alpha} + \frac{Z_{\alpha}}{\mu_{\alpha}} \left(\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}_{\alpha}} f_{\alpha} = 0 \\ \nabla^2 \phi = -\zeta^2 \sum Z_{\alpha} n_{\alpha} \qquad \mathbf{E}_L = -\nabla \phi \\ \nabla^2 \mathbf{B} = -\beta^2 \zeta^2 \nabla \times \mathbf{j} \\ \nabla^2 \hat{\mathbf{E}}_T - \beta^2 \zeta^2 \sum_{\alpha} \frac{Z_{\alpha}^2 n_{\alpha,0}}{\mu_{\alpha}} \hat{\mathbf{E}}_T = \beta^2 \zeta^2 \left[-\nabla \cdot \sum_{\alpha} Z_{\alpha} \langle \mathbf{v}_{\alpha} \mathbf{v}_{\alpha} \rangle_{\alpha} + \right. \\ \left. + \sum_{\alpha} \frac{Z_{\alpha}^2}{\mu_{\alpha}} \left(n_{\alpha} \mathbf{E}_L + \langle \mathbf{v}_{\alpha} \rangle_{\alpha} \times \mathbf{B} \right) \right] \\ \nabla^2 \Theta = \nabla \cdot \hat{\mathbf{E}}_T \qquad \mathbf{E}_T = \hat{\mathbf{E}}_T - \nabla \Theta \\ \nabla \cdot \mathbf{B} = 0 \end{cases}$$

The initial condition reproduces MMS data

$$B(x) = \frac{B_{msp} + B_{msh}}{2} \tanh(\frac{x}{L_{cs}}) + \frac{B_{msp} - B_{msh}}{2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

LOOKING FOR THE EQUILIBRIUM

- MHD force balance + Finite Larmor Radius (FLR) effects
- Non negligible agyrotropy

$$\mathsf{P} = \left(\begin{array}{ccc} P_{||} & P_{12} & P_{13} \\ P_{12} & P_{\perp} & P_{23} \\ P_{13} & P_{23} & P_{\perp} \end{array} \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

FIRST RESULTS: 2D MAGNETIC RECONNECTION SIMULATIONS

 $L_{cs} = 10 \ d_e, \ L_x = 120 \ 2\pi, \ L_y = 60 \ 2\pi, \ d_x = d_y = 0.37, \ m_i / m_e = 100$

SIMULATION PARAMETERS

Run FG_3/03	
L_1	10
$L_2 = 5 L_1$	50
B_{msp}	0.1
B_{msh}	0.1
B_{z0}	0.01
n _{msp}	1
$T_{e,msp} = T_{e,msh}$	1
$T_{i,msp} = T_{i,msh}$	1
amp	0.001
ε	0.1
N _{p,row}	128
$N_{p,col}$	64
N_x	2048
N_y	1024
L_x	$120 \ 2\pi$
L_y	$60 \ 2\pi$
d_x	0.37
d_y	0.37
$\lambda_{D,e}/d_e = v_{th,e}/c$	0.05
N_{vx}	51
N _{vy}	51
N _{vz}	71
$V_{x,e,max}$	5
$V_{y,e,max}$	5
$V_{z,e,max}$	5
dt	0.1
m_i/m_e	100