

# Phase-coherence properties of three-dimensional Bose-Einstein condensed gases

Francesco Delfino

Università di Pisa - A.A. 2015/16



## 2 Spin-wave theory



## Bose-Einstein condensation

## Momentum distribution of a gas of ${\rm Rb}^{87}$ atoms before and after ${\sf BEC}$



M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wiemann, E.A. Cornell, Science 269, 5221, 198 (1995)

#### Wave function of the condensate

$$egin{aligned} \Psi(\mathbf{x}) &= \langle b(\mathbf{x}) 
angle = |\Psi(\mathbf{x})| e^{i heta(\mathbf{x})} \ &\int |\Psi(\mathbf{x})|^2 = n_0 \end{aligned}$$

where  $b(\mathbf{x})$  is the bosonic field operator and  $n_0$  is the condensate fraction

#### Wave function of the condensate

$$egin{aligned} \Psi(\mathbf{x}) &= \langle b(\mathbf{x}) 
angle = |\Psi(\mathbf{x})| e^{i heta(\mathbf{x})} \ &\int |\Psi(\mathbf{x})|^2 = n_0 \end{aligned}$$

where  $b(\mathbf{x})$  is the bosonic field operator and  $n_0$  is the condensate fraction

#### Superfluidity

Two fluid model at finite temperature:  $\rho = \rho_s + \rho_n$ 

$$\mathbf{v}_{s} = \frac{\hbar}{m} \nabla \theta$$



### Homogeneous cubic-like systems

$$\Psi(\mathbf{x}) = \sqrt{n_0}$$

All the sizes of the system are of the same order

## Anisotropic systems



Anisotropy parameter

$$\lambda = L_a/L^2$$

 $L_a \equiv axial size, L \equiv transverse size$ 

 $\lambda \rightarrow \infty$ : Crossover from 3D behavior to effectively 1D behavior

# Spin-wave theory

Quantitative informations on long-range phase correlations are obtained from

$$G({f x},{f y})=\langle b^{\dagger}({f x})b({f y})
angle$$

using the following macroscopic representation of the field operator

$$b(\mathbf{x}) = \sqrt{n_0} e^{i\hat{ heta}(\mathbf{x})}$$

#### Assumptions

1 Long distance fluctuations of the density are negligible

#### 2

$$\mathcal{S}_{\mathrm{sw}} = \int d^3x \; rac{lpha}{2} (\partial_\mu heta)^2 \qquad lpha = \left(rac{\hbar}{m}
ight)^2 rac{
ho_s}{T}$$

$$G_{
m sw}(\mathbf{y}-\mathbf{x})=\langle e^{-i heta(\mathbf{x})}\,e^{i heta(\mathbf{y})}
angle$$

## Anisotropic limit $\lambda \to \infty$ $(\lambda = L_a/L^2)$

 $G_{
m sw}(0,0,z\gg 1)\sim e^{-z/\xi_a}$ 

Axial correlation length

$$\xi_{a} = 2\alpha L^{2}$$

# Helicity modulus

**Helicity modulus**  $Y_{\mu}$ : measure of the response of the system to a phase twisting  $\phi$  along direction  $\mu$ 

$$Y_x \equiv -rac{L_x}{L_y L_z} \left. rac{\partial^2 \log \mathcal{Z}(\phi)}{\partial \phi^2} 
ight|_{\phi=0}$$

#### Anisotropic geometries

$$Y_t = Y_x = Y_y = \alpha$$
  

$$Y_a = Y_z = \alpha - \frac{4\pi^2 \alpha^2}{\lambda} \frac{\sum_{n=-\infty}^{\infty} n^2 e^{-2\pi^2 n^2 \alpha/\lambda}}{\sum_{n=-\infty}^{\infty} e^{-2\pi^2 n^2 \alpha/\lambda}}$$
  

$$Y_a = \alpha \text{ for } \lambda \to 0; \qquad Y_a \to 0 \text{ for } \lambda \to \infty$$

# Bose-Hubbard model

#### Bose-Hubbard Hamiltonian

$$H=-t\sum_{\langle ij
angle}(b_i^{\dagger}b_j+b_j^{\dagger}b_i)+rac{U}{2}\sum_i n_i(n_i-1)-\mu\sum_i n_i$$

 $b_i (b_i^{\dagger})$  is a bosonic destruction (creation) operator  $n_i \equiv b_i^{\dagger} b_i$  is the particle density operator



Algorithm: Quantum Monte Carlo directed operator-loop algorithm

#### Simulations' parameters

- Anisotropic  $L^2 \times L_a$  lattices with periodic boundary conditions
- Hopping parameter: *t* = 1
- Chemical potential:  $\mu = 0$
- Temperature: T = 1.5 and T = 1.75

Algorithm: Quantum Monte Carlo directed operator-loop algorithm

#### Simulations' parameters

- Anisotropic  $L^2 \times L_a$  lattices with periodic boundary conditions
- Hopping parameter: t = 1
- Chemical potential:  $\mu = 0$
- Temperature: T = 1.5 and T = 1.75

 $\longrightarrow$  Fluctuations of the density are significantly different from zero only at one lattice spacing



# Axial correlation length



# Wall-wall correlation function



 $\mathcal{G}_w(z)$  in the limit  $\lambda o \infty$ 

- Exponential decay
- Correlation length:  $\xi_a = 2Y_t L^2$

- The long-range phase-coherence properties of homogeneous 3D BEC systems exhibit a universal behavior
- Universal scaling functions are approached in the limit  $L\to\infty$  with  $\lambda\equiv L_a/L^2$  fixed
- Phase decoherence occurs in the limit of infinite axial-size. The axial coherence length  $\xi_a$  remains finite and proportional to the transverse area  $A_t$

$$\xi_a \propto rac{
ho_s}{T} A_t$$