Search for the Higgs boson produced in association with a vector boson and decaying into a pair of *b*-quarks using large-R jets with the ATLAS detector

Giulia Di Gregorio

16th September 2019

Outline

- Introduction
- Motivation and status of $H \rightarrow b\overline{b}$ search
- Analysis strategy
- Preliminary results
- Conclusions
 - Personal contributions
 - Next steps

Introduction: Higgs sector 2009 arXiv:1207.7214 2012. GeV ATLAS Data Events/5 (05 05 Background ZZ(*) $H \rightarrow ZZ^{(*)} \rightarrow 4I$ -Run Background Z+jets, tt Signal (m_=125 GeV) • Higgs discovery 2012 ///// Syst.Unc. 2013 Precise determination of the Higgs 15 √s = 7 TeV: ∫Ldt = 4.8 fb⁻¹ boson mass $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ 10 Observation of decays in vector bosons 2015 100 150 200 250 Precise measurement of Higgs m₄ [GeV] • Run 2 properties Observation of Yukawa couplings to 2018 fermions: tau, top and **b** quarks Today

Why is the H→bb̄ channel interesting?

- Large BR (58%)
- Direct coupling between Higgs and fermions

• Why did it take so long to find the largest Higgs boson decay mode?

LHC cross sections

g 30000000 b g 30000000 b

Background of multi-jet production is 8 order of magnitude higher!

Higgs production modes at LHC

- Gluon-gluon fusion $\rightarrow \sigma = 49 \text{ pb}$
- Vector boson fusion $\rightarrow \sigma = 4$ pb
- Associated with a vector boson V
 (V=Z or V=W) → σ = 2 pb
- Associated with top quarks $\rightarrow \sigma = 1$ pb

Higgs production modes at LHC

- Gluon-gluon fusion $\rightarrow \sigma = 49 \text{ pb}$
- Vector boson fusion $\rightarrow \sigma = 4$ pb
- Associated with a vector boson V
 (V=Z or V=W) → σ = 2 pb
- Associated with top quarks $\rightarrow \sigma = 1$ pb

✓ V leptonic decay → clear signature!

VH, H→bb̄ channel

VH, H→bb̄ channel

Example of previous results

- Requiring leptons, MJ background is suppressed
- <u>BUT</u> bkg events are still there!
 - **VH** = signal events
- **Diboson, Z+jets, W+jets, top** = background events

Thanks to advance analysis techniques (including mva)

- **Observation** of $\mathbf{H} \rightarrow \mathbf{b}\mathbf{\bar{b}}$ decay mode (obs. significance **5.4** $\boldsymbol{\sigma}$)
- **Observation** of **VH** production mode (obs. significance 5.3 σ)

Cross section results

First differential cross section pp \rightarrow VH measurements

Why large-R jets?

- Effects of BMS more evident at high energy.
- High energy regime → production of particle with high transverse momenta (p_T) much larger than their mass
- Boosted particles → decay products highly collimated → need large-R jet to reconstruct the event

Higgs boson reconstruction

• Higgs candidate reconstructed with a large-R (R=1.0) jet

- To reconstruct the **Higgs decay products** $(b\overline{b})$
 - select 2 small-R leading jets inside the large-R jet
 - apply b-tagging algorithm

Event selection

- $E_T^{miss} > 250 \text{ GeV}$
- 0 charged leptons
- Angular cuts for multi-jet background rejection
- $p_T^W > 250 \text{ GeV}$
- 1 charged lepton

- $p_T^Z > 250 \text{ GeV},$
- 2 charged leptons
- Z boson mass: 61 GeV < m_{ll} < 116 GeV

Event selection

How does the channel with 0 charged leptons look like? zh A B q b-jet EXPERIM http://atlas.ch \sim q b b-jet b Missing transverse momentum Run: 204763 49333326 Event: Date: 2012-06-09 Time: 16:08:25 CEST

Multi-jet (MJ) background in 0L

- MJ bkg estimated with a **data-driven method**
 - MJ bkg fitted with an exponential decay (violet line)
- $\min[\Delta \varphi(E_T^{\text{miss}}, \text{ jets})] > 30^\circ$
 - Remaining MJ fraction negligible
 - 7% signal loss

How to improve the analysis?

- GeV 1600 🔶 Data ATLAS nternal GeV -- Data ATLAS Internal VH, H \rightarrow bb (μ =1.00) Events / 40 1200 √s = 13 TeV, 139.0 fb⁻¹ VH, H \rightarrow bb (μ =1.00) Diboson ♀ 5000 √s = 13 TeV 139.0 fb⁻¹ Diboson 0 lepton, SR tī Events / 4000 1 lepton. Sh tī Single top Single top W+jets W+jets Z+jets 1000 Uncertainty Uncertainty - VH, H $\rightarrow b\overline{b} \times 70$ - VH. H $\rightarrow b\overline{b} \times 20$ 3000 800 600 2000 400 1000 200 Data/Pred. 1.5 1.5 Data/Pred. 0.5 0.5 300 600 700 100 200 400 500 700 100 600 E^{miss}_T [GeV] p^v_⊤ [GeV] ATLAS Internal Events / . ĸs χ² - Data 500 Ldt = 139.0 fb ⁻¹ √s = 13 TeV -0 0 Stat -0 0 Syst ZH = vvbb, 250 GeV $\leq p_{\tau}^{V} \leq 400$ GeV, VH 125 Shape -0 0 ≥ 1 fat-jet, 2 tags, no add. b-tags 400 ΖZ Applying SR Z+bb 300 splitting: W+bb 200 Wt 16% gain in 0L ttbar 100 30% gain in 1L Signal x 5 (Data-Bkg)/Bkg (Data-Bkg)/Bkg 0.4 Stat 0.2 E 0 Stat+Shape -0.2 Stat+Svs -0.4 Nadd calo-jet
- Split events in 2 bins in ptv:
 - $250 \text{ GeV} < p_T^V <$ 400 GeV;
 - $p_T^V > 400 \text{ GeV}$

- Split events in **number** of additional jets
 - 0 add. jets
 - 1 or more add. jets ٠

G. Di Gregorio

Statistical treatment

- Invariant mass of the large-R jet constituents (**mJ**) is the **final discriminant**
- Profile likelihood fit is used to extract
 - signal strength μ $\mu = \frac{(\sigma \times BR(H \to b\bar{b}))_{\text{measured}}}{(\sigma \times BR(H \to b\bar{b}))_{\text{expected}}(SM)}$
 - main background normalization
- Systematic uncertainties (experimental and modelling) described in the likelihood L(μ, θ) with nuisance parameters θ
 - Modelling uncertainties still missing
 → studies are on going!

G. Di Gregorio

Fit results

• Expected significance: **3.09** *σ*

Source of uncertainty	Signed impact	Avg. impact
Total	+0.369 / -0.337	0.353
Statistical	+0.243 / -0.238	0.240
Systematic	+0.277 / -0.239	0.258

- Expected uncertainties on signal strength: $\sigma_{\mu} \sim 0.35$
 - Stat. uncertainties \approx Sys. uncertainties

Next steps & conclusions

- Conclusions:
 - During Run 2 period, precise measurements on the Higgs properties
 - Personal contributions
 - **Observation** of **VH** production and $\mathbf{H} \rightarrow \mathbf{b}\overline{\mathbf{b}}$ decay mode (<u>arXiv:1808.08238</u>)
 - First measurement of **differential cross section** pp \rightarrow VH (<u>arXiv:1903.04618</u>)
 - Search for **Higgs** candidate in **high** p_T regime (work in progress)
- <u>My next steps in the high p_T regime:</u>
 - Complete systematics uncertainties evaluation
 - Corroborate **statistical treatment** of the analysis
 - **Cross sections** measurements in the high p_T region (>400 GeV)
 - Interpret results in terms of **BSM scenario**
 - Combine results with previous analysis
 - Write thesis!

BACKUP SLIDES

Simplified template cross-section

- Same event selection and classification
- Splitted signal:
 - Poduction mode \rightarrow ZH o WH
 - $p_T^V \rightarrow cut at 150 \text{ GeV} and 250 \text{ GeV}$

Differential cross section $pp \rightarrow VH$ measurement

Single fit results

Fit	Pre-fit Asimov
0L+1L+2L	3.09
$0\mathrm{L}$	2.04
$1\mathrm{L}$	1.94
$2\mathrm{L}$	1.26

Uncertainties

- Two sources of uncertainties:
 - Statistical uncertainties
 - Systematics uncertainties
- Source of systematics:
 - experimental uncertainties
 - modelling of simulated data
 - Still missed in the fit results
 - Studies on going!
- Acceptance ratio sys introduced in the default fit model to mimic modeling uncertainties.

Systematics uncertainties

Source of uncertainty		Signed impact	Avg. impact		
Total		+0.369 / -0.337	0.353		
Statistical		+0.243 / -0.238	0.240		
Systematic		+0.277 / -0.239	0.258		
Experimental	l uncertainties				
small-R jets		+0.055 / -0.049	0.052		
large-R jets		+0.117 / -0.087	0.102		
$E_{\mathrm{T}}^{\mathrm{miss}}$		+0.007 / -0.007	0.007		
Leptons		+0.023 / -0.016	0.020		
	<i>b</i> -jets	+0.059 / -0.026	0.042		
<i>b</i> -tagging	<i>c</i> -jets	+0.005 / -0.004	0.004		
	light-flavour jets	+0.007 / -0.007	0.007		
	extrapolation	+0.009 / -0.009	0.009		
Pile-up		+0.009 / -0.006	0.008		
Luminosity		+0.020 / -0.009	0.015		
Acceptance r	atios				
SR to CR		+0.063 / -0.041	0.052		
HP to LP		+0.098 / -0.060	0.079		
med. to high	p_T^V	+0.032 / -0.030	0.031		
Theoretical and modelling uncertainties					
Signal		+0.073 / -0.037	0.055		
Floating normalisations		+0.099 / -0.090	0.094		
Z + iets		+0.010 / -0.010	0.010		
W + jets		+0.011 / -0.011	0.011		
tī		+0.001 / -0.001	0.001		
Single top quark		+0.003 / -0.003	0.003		
Diboson		+0.038 / -0.030	0.034		
Multijet		+0.000 / -0.000	0.000		
MC statistica	1	+0.102 / -0.101	0.102		

Dominant uncertaintes:

- Large-R jets unc.
- MC stat.

Observation VH e H \rightarrow **b** \overline{b}

Why VH, H→bb̄ channel?

- BR (H→bb̄) ~ 58%
 - <u>Caveat</u>: Multi-jet background
- First direct evidence of **Higgs coupling** with quarks

- Associated production with a vector boson V (V= Z o V=W),
 - V leptonic decay \rightarrow clear signature!

ATLAS detector

Event categorization

- Events splitted in **2 bin in ptv**:
 - $250 \text{ GeV} < p_T^V < 400 \text{ GeV};$
 - $p_T^V > 400 \text{ GeV}$
- In 0- and 1-lepton channel:
 - SR: 0 *b*-tagged VR track jets <u>not</u> matched to the large-R jet
 - top CR: \geq 1 *b*-tagged VR track jets <u>not</u> matched to the large-R jet
- In 0- and 1-lepton, SR splitted in:
 - **High purity SR**: 0 add calo small-R add. jet with $p_T > 30 \text{ GeV}$
 - Low purity SR: \geq 1 add calo small-R add. jet with $p_T > 30 \text{ GeV}$

250

>4 G

10 SRs e 4 CRs

	0L		1L		
	# add. small-R jets		# add small-R jets		2L
	0	>=1	0	>=1	
-400	SR	SR	SR	SR	CD
eV	CR		CR		36
100	SR	SR	SR	SR	SD.
eV CR		CR		51	

Multi-jet (MJ) background in 0L

- MJ bkgs enters due to the mis-measurements of the energy of a jet $\rightarrow E_T^{miss}$ and mis-measured jets tends to be aligned
- min[$\Delta \varphi(E_T^{miss}, small-R jets)$] > 30°
 - <u>BUT</u> 22% signal loss due to WH sample (tau misidentification)
- pT(jet) can be used to discriminate WH and MJ events

SR splitting

- Top process one of the main bkgs
 - Characterized by more jets than signal events

Main background

- Z+jets e W+jets \rightarrow estimated from simulation
- Top (ttbar e single-top) \rightarrow dedicated control regions
- Diboson (WZ, ZZ) \rightarrow final state similar to VH, estimated from simulation
- Multi-jet \rightarrow suppress with angular cuts, estimated with data-driven methods

Why is the H→bb̄ channel interesting?

- To establish the **fate of the Higgs** boson due to the expected BR.
- To control the Higgs Yukawa sector
- To extract the total width (not directly measurable at the LHC)
 - Only **ratio of BR** (couplings) are truly **model independent** at the LHC
 - Absolute coupling measurement requires assumptions on the total width → a term accounting for 58% of the total has a dominant effect on all the coupling determination

Higgs decay modes

BR (H→bb) ~ 58%

Why it took so long to find the largest Higgs boson decay mode?

Charge misidentification probability

 $P(mis. id.) \sim 3-4\%$

Efficiency = 0.97*0.97 = 0.94 $\rightarrow 6\%$ of signal loss