Atomic fountain as frequency standard

Seminari Dottorandi XXXII ciclo 08/06/17 Umberto Giacomelli

00 000000 00	0

TABLE OF CONTENTS

INTRODUCTION

ATOMIC FOUNTAIN

NIST-F2

FUTURE DEVICES

INTRODUCTION ●○	Atomic Fountain 000000	NIST-F2 00	Future devices o
	Why frequenc	y standard	

Metrology
 Physcics experiment
 Navigation system

INTRO	DUCTION	ATOMIC FOUNTAIN	NIST-F2	FUTURE DEVICES
•••				<u> </u>
		Why frequency star	ndard	
		J 1 J		
	 Metrology 	 Physcics experiment 	 Navigation s 	system
	0.	, <u> </u>	Ū	2

Kind of frequency standard

• Radio-frequency

• Optic

ATOMIC FREQUENCY STANDARD (AFS)

Scheme of the function of an AFS Fig 5 from A. Bauch, H. R. Telle, Rep. Prog. Phys. **65** 789 (2002)

$$f = \frac{\Delta E_{12}}{h}$$

- ► *f_p*: probing frequency
- *I*_D: delivered response of atomic resonator in dependence of *f*_p
- ► U_C: LO Control signal generated by processing I_D

RAMSEY'S IDEA

Oven

Readapted from Fig 18.1 of C. Cohen-Tannoudji, D. Guery-Odelin Advances in Atomic Physics: An Overview

Using a thermal beam of cesium athoms with a mean velocity of $\sim 100 \text{ ms}^{-1}$ we get a FWHM of 100 Hz with respect to a theorical central frequency $\nu_0 = 9.192631770 \text{ GHz}$

Fig 18.1 of N. F. Ramsey, Phys. Rev. 78 695 (1950)

INTRODUCTION	Atomic Fountain	NIST-F2	FUTURE DEVICES
00	00000	00	0

REQUIREMENTS FOR A GOOD AFS

- Small natural linewidth of the transition
- Long interaction time of the atomic absorber with the probing radiation (or low velocity of the probed atoms)
- High signal-to-noise ratio in order to minimize statistical fluctuations in the signal used for control of the LO
- Minimal dependency of the atomic eigenstates energy to electric and magnetic fields

Fig 4.1 from D. L. Andrews, D. S. Bradshaw, Optical Nanomanipulation

Fig 5 from A. Bauch, H. R. Telle, Rep. Prog. Phys. **65** 789 (2002)

Fig 4.1 from D. L. Andrews, D. S. Bradshaw, Optical Nanomanipulation

Fig 5 from A. Bauch, H. R. Telle, Rep. Prog. Phys. **65** 789 (2002)

In the case of cesium the final temperature is $\sim 2\mu K$ corresponding to speed of $11 mm s^{-1}$

Clock transition signal

1.0-

0.5

0.0 -1.0

-60 -40 -20

٠

.

٠

C-field coil

Fig 8 from A. Bauch, H. R. Telle, Rep. Prog. Phys. 65 789 (2002)

0.0

 $(f_{0} - f_{0}) / \text{Hz} \rightarrow$

0.5

1.0

-0.5

20

60

Fig 3 from R. Wynands, S. Weyers, Metrologia 42 (3) S64 (2005)

INTRODUCTION	Atomic Fountain	NIST-F2	FUTURE DEVICES
00	00000	00	0

COMPARISON

Fig 2 from T. P. Heavner et al Metrologia 51 (3) 174 (2014)

NIST-F2 UNCERTAINTIES AND STABILITY

Fractional Uncertainties type A $0.44 \cdot 10^{-15}$ type B $0.16 \cdot 10^{-15}$

Fig 1 from T. P. Heavner et al Metrologia 51 (3) 174 (2014)

• PHARAO : v = 0.05 m/s, T = 5 s $\Delta v = 0.1 \text{ Hz}$

INTRODUCTION	Atomic Fountain	NIST-F2	FUTURE DEVICES
00	000000	00	0

THANK YOU FOR YOUR ATTENTION

REFERENCES T. P. Heavner et al Metrologia **51** (3) 174 (2014) A. Bauch, H. R. Telle, Rep. Prog. Phys. **65** 789 (2002) C. Cohen-Tannoudji, D. Guery-Odelin *Advances in Atomic Physics: An Overview*

INTRODUCTION	Atomic Fountain	NIST-F2	FUTURE DEVICES
00	000000	00	0

ALLAN DEVIATION

$$\sigma_y(\tau) = \sqrt{\frac{1}{2(M-1)} \sum_{i=1}^{M-1} (\overline{y}_{i+1} - \overline{y}_i)^2}$$

where τ is the observation period, \overline{y}_i is the *i*th fractional frequency average over τ , *M* is the number of values in the \overline{y}_i series

INTRODUCTION 00	Atomic Fountain 000000	NIST-F2 00		Future devices
	Developed offect	Magnituda	Un containtre	
		170.07	0.02	_
		179.07	0.03	
	Second-order Zeeman	286.06	0.02	
	blackbody radiation	-0.087	0.005	
	Spin-exchange (low density)	-0.71	0.24	
	Spin-exchange non-linearity	0	0.02	
	Microwave amplitude effects			
	Distributed cavity phase shift (DCPS)			
	m = 0	< 0.01	< 0.01	
	m = 1	0	0.028	
	m = 2	0	0.02	
	Microwave power	< 0.01	0.08	
	Microwave spurious	0	0.05	
	Cavity pulling	0.015	0.015	
	Rabi pulling	< 0.01	< 0.01	
	Ramsey pulling	< 0.01	< 0.01	
	Majorana transitions	< 0.01	< 0.01	
	Fluorescence light shift	< 0.01	< 0.01	
	Dc Stark effect	< 0.01	< 0.01	
	Background gas collisions	< 0.01	< 0.01	
	Bloch-Siegert	< 0.01	< 0.01	
	Integrator offset	< 0.01	< 0.01	
	Tab 1 from T. P. Heavner et al Metr	ologia 51 (3) 1	74 (2014)	
			. /	