From interstellar medium to stars

Davide Giambastiani Dipartimento di Fisica, Università di Pisa June 24, 2019

Outline

- The Interstellar medium
- Gravitational collapse
- Protostellar phase
- Pre-Main Sequence

The interstellar medium

 $10 \lesssim \mathcal{T} \lesssim 10^6 \; [{
m K}]$ $10^{-3} \lesssim {
m n} \lesssim 10^3 \; [1/cm^3]$

Phase	n _{tot}	Т	М
	(cm ⁻³)	(K)	$(10^9 M_{\odot})$
molecular	> 300	10	2.0
cold neutral	50	80	3.0
warm neutral	0.5	8×10^{3}	4.0
warm ionized	0.3	8×10^{3}	1.0
hot ionized	3×10^{-3}	5 × 10⁵	-

Stahler and Palla (2004)

 $\begin{array}{c} \mbox{Molecular clouds} \\ \mbox{Mostly molecular hydrogen} \\ n\sim 10^{2-3}\,cm^{-3}, \ T\sim 10-30\, K \end{array}$

Interstellar dust Silicates and carbon \sim 0.1 μm

Molecular cloud and initial collapse

Cloud of molecular hydrogen

Isothermal phaseFree-fall collapse

$$au_{\it ff}^{\it Sun} \sim rac{1}{\sqrt{G\overline
ho}} \sim 10^5 {\it yr}$$

$$egin{aligned} M &\sim 10^5 - 10^6 \ M_\odot \ T &\sim 10 - 30 \ K \
ho &\sim 10 - 100 \ ext{particles}/cm^3 \end{aligned}$$

Wolk et al. (2008)

Fragmentation

$$M_J = 1 M_{\odot} \left(rac{T}{10 K}
ight)^{3/2} \sqrt{rac{10^4 cm^{-3}}{n}}$$

 $M_{Cloud} >> M_J \longrightarrow ext{Instability}$

Fragmentation of the cloud

First protostellar core

Opaque central region Rise of the central temperature

$$M^{Sun}_{core} \sim 5 imes 10^{-2} ~M_{\odot}$$

 $R^{Sun}_{core} \sim 10^3 ~R_{\odot}$

Stahler and Palla (2004)

Dissociation of H_2 ($\sim 2000 K$) and collapse of the core

Stellar core

Rise in central temperature and pressure

Main accretion phase (free-fall velocity of the gas)

Emission in extreme ultraviolet and X-ray

Stahler (1991)

Redshift due to scattering (visible in infrared)

8/16

Birthline

The locus in the HR diagram where Pre-MS stars of various masses should first appear as visible objects (Stahler, 1983)

Stahler (1991)

Deuterium ignition

$$p + D \longrightarrow^{3} He + \gamma$$

$$T\sim 10^6~K$$

Deuterium ignition

efficiency $\propto T^{12}$

Strongly dependent from temperature

Equilibrium of the stellar structure

Expansion:

- decreasing temperature
- decreasing efficiency

Contraction:

- increasing temperature
- increasing efficiency

Hayashi track

Convective star

Kelvin-Helmholtz timescale

$$t_{KH} \approx 3 imes 10^7 \ yr \left(rac{M_{\star}}{M_{\odot}}
ight)^2 rac{R_{\odot} L_{\odot}}{R_{\star} L_{\star}}$$

Constant effective temperature Decreasing luminosity

Salaris and Cassisi (2005) - Adapted

Lithium burning

No influence on contraction

Towards the main sequence

Contraction and temperature rise

What happens next?

- $M \lesssim 0.08~M_{\odot}$: Brown dwarf
- $M \gtrsim 0.08~M_{\odot}$: Ignition of hydrogen (MS)

Brown dwarfs

Electron degeneracy counteracts gravity and temperature falls

Stahler and Palla (2004)

Approach to Main Sequence Phase

Evolution of a star (HR diagram)

What is neglected?

Rotation

- Magnetic field
- Chemical composition
- Large- and low-mass stars

G. A. Feyden and B. Chaboyer. The Astrophysical Journal, 779:183 (2013)

G. Somers and M. H. Pinsonneault. The Astrophysical Journal, 807:174 (2015)

L. Amard et al. arXiv: 1905.08516v1 (2019)

Thank you for the attention

References

S. W. Stahler *and* F. Palla. The Formation of Stars, WILEY-VCH (2004)

R. B. Larson. Mon. Nat. R. astr. Soc. 145, 271-295 (1969)

M. Salaris *and* S. Cassini. Evolution of Stars and Stellar Populations, John Wiley & Sons (2005)

S. W. Stahler. Scientific American 48-55, July 1991

E. Tognelli et al. A&A 533, A109 (2011)

E. I. Vorobyov and Y. N. Pavlyuchenkov. A & A 606, A5 (2017)

S. J. Wolk et al. arXiv: 0808, 3385 (2008)

Birthline

Birthline

Mass	Radius	$\log L_*$	$\log T_{eff}$	Δt_D	tzams
(M)	(R)	(L)	(K)	(yr)	(yr)
0.1	2.49	-0.28	3.49	1.5×10^{6}	3.7 × 10 ⁸
0.2	2.52	-0.01	3.52	8.5×10^{5}	2.4×10^{8}
0.4	2.70	+0.27	3.56	3.0×10^{5}	1.1×10^{8}
0.8	4.32	+0.78	3.61	2.7×10^{4}	5.2×10^{7}
1.0	4.92	+0.85	3.63	6.9×10^{3}	3.2×10^{7}
1.5	5.09	+0.89	3.65	0	1.2×10^{7}
2.0	4.94	+0.90	3.67	0	8.4×10^{6}
3.0	5.66	+0.94	3.70	0	2.0×10^{6}
4.0	10.2	+2.09	3.84	1.4×10^{4}	8.2×10^{5}
5.0	8.20	+2.83	4.05	8.3×10^{3}	2.3×10^{5}
6.0	4.62	+3.24	4.27	1.1×10^{3}	2.9×10^{4}
7.0	3.28	+3.40	4.32	7.0×10^{1}	8.5×10^{3}
8.0	3.11	+3.55	4.36	0	0

Table 16.1 The Theoretical Birthline

Stahler and Palla (2004)

Pre-Main Sequence

Table 16.2 E	volution of	Low-Mass,	Pre-Main	 Sequence 	Stars
--------------	-------------	-----------	----------	------------------------------	-------

	11 * - 0.211						
Time (yr)	R* (R)	log T _{eff} (K)	log L * (L)	log T _c (K)	$L_{\rm nuc}/L_*$	$\stackrel{M_{\mathrm{con}}}{(M)}$	
0	2.55	3.51	+0.02	5.81	0	0.06	
1×10^{5}	2.29	3.51	-0.02	5.92	0.83	0.20	
1×10^{6}	1.89	3.51	-0.57	6.08	0.12	0.20	
3×10^{6}	1.30	3.52	-1.11	6.30	0	0.20	
1×10^{7}	0.61	3.52	-1.40	6.48	0	0.20	
3×10^{7}	0.41	3.52	-1.78	6.64	0	0.20	
1×10^{8}	0.28	3.52	-2.10	6.75	0.40	0.20	
2×10^{8}	0.26	3.52	-2.15	6.78	0.90	0.20	

 $M_{*} = 0.2 M$

 $M_{*} = 0.6 M$

Time (yr)	$\begin{pmatrix} R_*\\(R) \end{pmatrix}$	log T _{eff} (K)	log L * (L)	$\log T_c$ (K)	$L_{\rm nuc}/L_*$	$\stackrel{M_{\rm con}}{(M)}$
0	4.01	3.59	+0.54	6.04	0.85	0.60
1×10^{5}	4.00	3.59	+0.53	6.08	0.45	0.60
3×10^{5}	3.62	3.59	+0.43	6.17	0.09	0.60
1×10^{6}	2.13	3.59	-0.02	6.35	0	0.60
3×10^{6}	1.51	3.59	-0.35	6.51	0	0.60
1×10^{7}	0.90	3.58	-0.78	6.68	0	0.51
3×10^{7}	0.72	3.59	-0.98	6.77	0.06	0.30
9×10^{7}	0.58	3.61	-1.08	6.97	0.90	0.10

 $M_{*} = 1.0 M$

Time (yr)	$\begin{pmatrix} R_*\\(R) \end{pmatrix}$	log T _{eff} (K)	log L * (L)	$\log T_c$ (K)	$L_{\rm nuc}/L_*$	$\stackrel{M_{\rm con}}{(M)}$
0	4.80	3.64	+0.85	6.20	0	1.00
1×10^{5}	4.25	3.63	+0.75	6.22	0	1.00
3×10^{5}	3.77	3.63	+0.62	6.26	0	1.00
1×10^{6}	2.59	3.63	+0.28	6.48	0	1.00
3×10^{6}	1.80	3.63	+0.00	6.64	0	0.78
1×10^{7}	1.22	3.64	-0.28	6.78	0.01	0.38
3×10^{7}	1.01	3.75	-0.02	7.09	0.90	0.03

Stahler and Palla (2004)