Noise from stray light in interferometric gravitational waves detectors

Pre-thesis seminar by: Jose M. González Jose.gonzalez@for.unipi.it

Supervisor: Prof. Francesco Fidecaro

Outline

- Interferometric gravitational waves detectors
 - Advanced Virgo
 - Stray light issues
- Ray tracing
 - Ray tracing fundamentals
 - Shading
 - Interference with particle model of light
- Coupling between light and mechanics
 - Phase noise
 - Fabry-Perot cavities

Advanced Virgo configuration

Advanced Virgo design Sensitivity

Stray light

Stray light is all the light that follows a non expected path. Mainly there are 4 sources:

- Secondary beams
- Rough surface scattering
- Point defect scattering
- Diffraction

28/09/2016

Stray light noise

• Phase change due to a moving element:

$$\phi(t) = \frac{4\pi}{\lambda} (x_0 + \delta x_{sc}(t)) = \phi_0 + \delta \phi_{sc}(t)$$

• Which can recouple as:

$$h = G \cdot \sin \phi_{sc}$$

Stray light noise II

- Two regimes:
 - Linear regime: small amplitude

 $h(f) = G\phi_{sc}$

- Non-linear regime
 - Upconversion phenomena:

$$\sin(a\sin\psi) = 2\sum_{n=1}^{\infty} J_{2n-1}(a)\sin[(2n-1)\psi]$$

$$f_{max} = \frac{2A_x}{\lambda} 2\pi f_{sc}$$

Expected noise during sea activity

Recent case during AdV commisioning

Spurious light inside IMC at 50Hz before and after intervention

Importance of Low frequency sensitivity

Ray tracing

- Basic technique to simulate ray as a particle
 - 1 initialization;
 - 2 Set up Objects;
 - **3** for $i \in Range(1, MaxRays)$ do

4	Generate new Ray ;
5	while $exists$ Ray do
6	Find Interesection of Ray with Objects;
7	Select MinInteresection ;
8	
9	return 0
10	else if MinInteresection = Sensor then
11	Save the Ray on the Sensor ;
12	return 0
13	else
14	Do Shading \rightarrow Generate new Ray
15	end
16	end

17 end

Shading

Shading: Model of the interaction between light and matter, usually BRDF divided in:

- Reflection
- Transmission
- Scattering
- Absorption

Interference

Wave property that can be simulated with ray tracing

Transform Optical Path Length into Phase

Amplitude: |E|² [au]

 $-\pi \leq Phase \leq \pi$

Interference pattern simulated with a Michelson configuration of a collimated beam with spherical mirrors of 2.2m and 9.2m

Coupling between light and mechanics

As has been previously explained, the movement of a mechanical component may induce noise on a specific frequency

Phase noise

• Modulation of a photon hitting a moving surface: 2π

$$\Delta \phi(t) = \frac{2\pi}{\lambda} (\vec{s} - \vec{\omega}) \cdot \vec{X}(t)$$

• Phase change on main beam and GW strain:

$$\Delta \phi_{rec}(t) = Im[\gamma(t)]/\sqrt{P}$$

$$\Delta\phi_{rec}(t) = \frac{4\pi L}{\lambda}h(t)$$

Noise on Fabry-Perot cavities

28/09/2016

m1

m2

104

Noise on Fabry-Perot cavities

Previous results obtained by Vinet et.al.

	Noise $[1/Hz]$
Analytical method	$1.23X10^{-23}$
Statistical	10^{-23}

Note: the statistical method was using seismic noise already in frequency domain

Baffle at 500Hz with $A=1\mu m \rightarrow f_{max} = 6Khz$

Conclusions and future work

- Conclusions
 - Ray tracing can be used to simulate some wave optics phenomena.
 - It is possible to estimate strain noise produced by stray light.
- Future work
 - Physics side:
 - Find new important cases to find out the contribution to the total noise.
 - Perform experiments to validate the results of the code.
 - -SW side:
 - Optimize the code and include GPU computing.
 - Obtain input for realistic optomechanical components, probably from CAD files.

Thank you for your attention

