Fluctuation Theorems for classical and quantum systems

Giampiero Marchegiani

Dipartimento di Fisica Università di Pisa e CNR-Istituto Nanoscienze

July 4, 2016

Giampiero Marchegiani Fluctuation Theorems for classical and quantum systems

What?

- Exact results relating nonequilibrium fluctuations to equilibrium quantities
- Example: Jarzynski Equality (1997)

$$< e^{-W/k_BT} >= e^{-\Delta F/k_BT}$$

Why?

- Fluctuations are relevant for small systems (nanoscale physics)
- Fluctuations are not just noise
- Microscopic understanding of thermodynamics laws
- Compute equilibrium properties from nonequilibrium measurements

Brownian Motion

Incessant motion of pollen grains suspended in water (Brown, 1827)

Brownian Motion

Incessant motion of pollen grains suspended in water (Brown, 1827)

Einstein explanation (1905)

- Stochastic force related to interactions with water molecules
- Computation of diffusion coefficient $D = \mu k_B T$
- Decisive proof of existence of atoms

Brownian Motion

Incessant motion of pollen grains suspended in water (Brown, 1827)

Einstein explanation (1905)

- Stochastic force related to interactions with water molecules
- Computation of diffusion coefficient $D = \mu k_B T$
- Decisive proof of existence of atoms

Relation between thermal fluctuation D and response to perturbation μ

< A > < Fluctuation Theorems for classical and quantum systems

3 1 4

• Analog expression derived by Nyquist and Johnson (1927) $S_{VV}(\omega) \simeq 2k_B TR$

A B + A B +

- Analog expression derived by Nyquist and Johnson (1927) $S_{VV}(\omega) \simeq 2k_B TR$
- Derived in a quantum mechanical setting by Callen and Welton (1951)

伺 ト く ヨ ト く ヨ ト

- Analog expression derived by Nyquist and Johnson (1927) $S_{VV}(\omega) \simeq 2k_B TR$
- Derived in a quantum mechanical setting by Callen and Welton (1951)
- Generalized by Green (1952,1954) and Kubo (1957)

- Analog expression derived by Nyquist and Johnson (1927) $S_{VV}(\omega) \simeq 2k_B TR$
- Derived in a quantum mechanical setting by Callen and Welton (1951)
- Generalized by Green (1952,1954) and Kubo (1957)
- Linear Response theory: Fluctuation-Dissipation theorem

$$\chi_{BA}(\omega) = rac{1}{k_B T} \int_0^\infty < \dot{A}(0)B(t) > e^{i\omega t}$$

• • = • • = •

- Analog expression derived by Nyquist and Johnson (1927) $S_{VV}(\omega) \simeq 2k_B TR$
- Derived in a quantum mechanical setting by Callen and Welton (1951)
- Generalized by Green (1952,1954) and Kubo (1957)
- Linear Response theory: Fluctuation-Dissipation theorem

$$\chi_{BA}(\omega) = rac{1}{k_B T} \int_0^\infty < \dot{A}(0)B(t) > e^{i\omega t}$$

What about system arbitrarily far from thermal equilibrium?

伺 ト イヨト イヨト

Start at thermal equilibrium (reservoir at temperature T)

∃ → < ∃ →</p>

Start at thermal equilibrium (reservoir at temperature T)

同 ト イ ヨ ト イ ヨ ト

Start at thermal equilibrium (reservoir at temperature T)

System driven away from equilibrium, protocol $\lambda : [0, \tau] \longrightarrow R$, with hamiltonian $H(\mathbf{z}, \lambda_t)$

同 ト イ ヨ ト イ ヨ ト

Start at thermal equilibrium (reservoir at temperature T)

$$\rho_0(\mathbf{z}) = \frac{e^{-\beta H(\mathbf{z},\lambda_0)}}{Z(\lambda_0)}$$

同 ト イ ヨ ト イ ヨ ト

System driven away from equilibrium, protocol $\lambda : [0, \tau] \longrightarrow R$, with hamiltonian $H(\mathbf{z}, \lambda_t)$

Start at thermal equilibrium (reservoir at temperature T)

$$\rho_0(\mathbf{z}) = \frac{e^{-\beta H(\mathbf{z},\lambda_0)}}{Z(\lambda_0)}$$

System driven away from equilibrium, protocol $\lambda : [0, \tau] \longrightarrow R$, with hamiltonian $H(\mathbf{z}, \lambda_t)$

Let it thermalize $\longrightarrow W \ge \Delta F$ (equality if reversible)

Fluctuation Theorems: Classical Physics

Microscopic viewpoint: $\forall \mathbf{z}_0 \longrightarrow W[\mathbf{z}; \lambda] = H(\mathbf{z}_{\tau}; \lambda_{\tau}) - H(\mathbf{z}_0, \lambda_0)$ Work is a RANDOM quantity $(p[W; \lambda])$

Fluctuation Theorems: Classical Physics

Microscopic viewpoint: $\forall \mathbf{z}_0 \longrightarrow W[\mathbf{z}; \lambda] = H(\mathbf{z}_{\tau}; \lambda_{\tau}) - H(\mathbf{z}_0, \lambda_0)$ Work is a RANDOM quantity $(p[W; \lambda])$

Two ingredients

- Dynamical microreversibility
- Initial Gibbs state

Reprinted from Campisi et. al.(2011)

Fluctuation Theorems: Classical Physics

Microscopic viewpoint: $\forall \mathbf{z}_0 \longrightarrow W[\mathbf{z}; \lambda] = H(\mathbf{z}_{\tau}; \lambda_{\tau}) - H(\mathbf{z}_0, \lambda_0)$ Work is a RANDOM quantity $(p[W; \lambda])$

Reprinted from Campisi et. al.(2011)

Two ingredients

- Dynamical microreversibility
- Initial Gibbs state

Results

Crooks (1999)

$$\frac{p[W;\lambda]}{p[-W;\tilde{\lambda}]} = e^{\beta(W-\Delta F)}$$

Follows the Jarzynski equality

$$< e^{-eta W} >_{\lambda} = e^{-eta \Delta F}$$

Relation to second principle of thermodynamics

Using Jensen Inequality $\langle e^{-\beta W} \rangle_{\lambda} = e^{-\beta \Delta F} \longrightarrow \langle W \rangle_{\lambda} \ge \Delta F$ In particular for $\Delta F = 0$, $\langle W \rangle_{\lambda} \ge 0$ (Kelvin Formulation) Using Jensen Inequality $\langle e^{-\beta W} \rangle_{\lambda} = e^{-\beta \Delta F} \longrightarrow \langle W \rangle_{\lambda} \ge \Delta F$ In particular for $\Delta F = 0$, $\langle W \rangle_{\lambda} \ge 0$ (Kelvin Formulation)

Microscopic version: inequalities valid only on AVERAGE. Single realization can violate the second law, but are exponentially suppressed! Using Jensen Inequality $\langle e^{-\beta W} \rangle_{\lambda} = e^{-\beta \Delta F} \longrightarrow \langle W \rangle_{\lambda} \ge \Delta F$ In particular for $\Delta F = 0$, $\langle W \rangle_{\lambda} \ge 0$ (Kelvin Formulation)

Microscopic version: inequalities valid only on AVERAGE. Single realization can violate the second law, but are exponentially suppressed!

Fluctuation relation for entropy:

$$< e^{-\Delta(eta E) + \int dQ/T} >_{\lambda} = e^{-\Delta(eta \Delta F)}$$

Follow Clausius formulation $\Delta S \ge < \int dQ/T >$

Substitutions

$$H(\mathbf{z}, \lambda_t) \longrightarrow \mathcal{H}(\lambda_t)$$

$$\rho(\mathbf{z}, \lambda_t) \longrightarrow \varrho(\lambda_t) = \frac{e^{-\beta \mathcal{H}(\lambda_\tau)}}{\mathcal{Z}(\lambda_t)}$$

$$Z(\lambda_t) \longrightarrow \mathcal{Z}(\lambda_t) = \operatorname{Tr} e^{-\beta \mathcal{H}(\lambda_\tau)}$$

$$\phi_{t,0}[z_0; \lambda] \longrightarrow U_{t,0}[\lambda] = \mathcal{T} e^{-\frac{i}{\hbar} \int_0^t ds \mathcal{H}(\lambda_s)}$$

$$W \longrightarrow ???$$

Reprinted from Campisi et al. (2011)

Substitutions

$$H(\mathbf{z}, \lambda_t) \longrightarrow \mathcal{H}(\lambda_t)$$

$$\rho(\mathbf{z}, \lambda_t) \longrightarrow \varrho(\lambda_t) = \frac{e^{-\beta \mathcal{H}(\lambda_\tau)}}{\mathcal{Z}(\lambda_t)}$$

$$Z(\lambda_t) \longrightarrow \mathcal{Z}(\lambda_t) = \text{Tr } e^{-\beta \mathcal{H}(\lambda_\tau)}$$

$$\phi_{t,0}[z_0; \lambda] \longrightarrow U_{t,0}[\lambda] = \mathcal{T} e^{-\frac{i}{\hbar} \int_0^t ds \mathcal{H}(\lambda_s)}$$

$$W \longrightarrow ???$$

Reprinted from Campisi et al. (2011)

What is quantum work?

- Work is NOT a quantum observable, $\nexists \mathcal{W}$ hermitian operator
- Work it is not a state variable, characterize a process

Two projective measurements definition

Measure the energy at times t = 0 and $t = \tau$

$$W[\mathbf{z}; \lambda] \longrightarrow w = E_m^{\lambda_t} - E_n^{\lambda_0}$$

where

$$\mathcal{H}(\lambda_t)|\psi_{n,\lambda}^{\lambda_t}\rangle = E_n^{\lambda_t}|\psi_{n,\lambda}^{\lambda_t}\rangle$$

∃ → < ∃ →</p>

Two projective measurements definition

Measure the energy at times t = 0 and $t = \tau$

$$W[\mathbf{z};\lambda] \longrightarrow w = E_m^{\lambda_t} - E_n^{\lambda_0}$$

where

$$\mathcal{H}(\lambda_t)|\psi_{n,\lambda}^{\lambda_t}>=E_n^{\lambda_t}|\psi_{n,\lambda}^{\lambda_t}>$$

Microreversibility+Gibbs Distribution

The same fluctuation relations apply! Tasaki(2000) and Kurchan (2000)

$$\frac{p[w;\lambda]}{p[-w;\tilde{\lambda}]} = e^{\beta(w-\Delta F)} \ , \ < e^{-\beta w} >_{\lambda} = e^{-\beta \Delta F}$$

An application: efficiency of a Quantum Heat Engine

$$\mathcal{H}(t) = H(\lambda_t) + H_H + H_C + c_t V_C + h_t V_H$$

$$\rho_{0} = \frac{e^{-\beta_{C}H(\lambda_{0})}}{Z_{0}(\beta_{C})} \otimes \frac{e^{-\beta_{C}H_{C}}}{Z_{C}} \otimes \frac{e^{-\beta_{H}H_{H}}}{Z_{H}}$$
$$\frac{P(\Delta E, Q_{H}, Q_{C})}{\tilde{P}(-\Delta E, -Q_{H}, -W)} = e^{(\beta_{C}-\beta_{H})Q_{H}-\beta_{C}W}$$
$$< e^{(\beta_{C}-\beta_{H})Q_{H}-\beta_{C}W} >= 1$$
$$< \eta >= \frac{\langle W \rangle}{\langle Q_{H} \rangle} \le 1 - \frac{T_{C}}{T_{H}}$$

Reprinted from Campisi (2014)

Efficiency smaller than Carnot!!!

Fluctuations Theorems

- Rely on microreversibility of motion and initial thermal state
- Hold unaltered in classical and quantum physics
- Deeper understanding of thermodynamics laws

REFERENCES

- Einstein, A., 1905, Ann.Phys. 17
- Nyquist, H., 1928 Phys. Rev. 32
- Callen, H. B., and T. A. Welton, 1951, Phys. Rev. 83
- Kubo, R., 1966 Reports on Progress in Physics, 29, Part I
- Jarzynski , C., 1997, Phys. Rev. Lett. 78
- Crooks, , G. E., 1999, Phys Rev. E 60
- Campisi, M., Hanggi, P., and Talkner, P., 2011 Rev.Mod.Phys 83
- Tasaki, H., 2000, eprint arXiv: cond-mat/0009244
- Campisi, M., 2014, J. Phys. A: Math. Theor 47

4 B b 4 B b