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Fluctuation Theorems

What?

Exact results relating nonequilibrium fluctuations to
equilibrium quantities

Example: Jarzynski Equality (1997)

< e−W /kBT >= e−∆F/kBT

Why?

Fluctuations are relevant for small systems (nanoscale physics)

Fluctuations are not just noise

Microscopic understanding of thermodynamics laws

Compute equilibrium properties from nonequilibrium
measurements
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Brownian Motion

Incessant motion of pollen grains suspended in water (Brown,
1827)

Einstein explanation (1905)

Stochastic force related to
interactions with water
molecules

Computation of diffusion
coefficient D = µkBT

Decisive proof of existence
of atoms

Relation between thermal
fluctuation D and response to
perturbation µ
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Fluctuation-Dissipation Theorem

Einstein’s result can be generalized

Analog expression derived by Nyquist and Johnson (1927)
SVV (ω) ' 2kBTR

Derived in a quantum mechanical setting by Callen and
Welton (1951)

Generalized by Green (1952,1954) and Kubo (1957)

Linear Response theory: Fluctuation-Dissipation theorem

χBA(ω) =
1

kBT

∫ ∞
0

< Ȧ(0)B(t) > e iωt

What about system arbitrarily far from thermal equilibrium?
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A model study: single thermal bath

Start at thermal equilibrium (reservoir at temperature T)

ρ0(z)=
e−βH(z,λ0)

Z (λ0)

System driven away from equilibrium, protocol λ : [0, τ ] −→ R,
with hamiltonian H(z, λt)

ρτ (z) 6= e−βH(z,λτ )

Z (λτ )

Let it thermalize −→ W ≥ ∆F (equality if reversible)
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Fluctuation Theorems: Classical Physics

Microscopic viewpoint: ∀z0 −→W [z;λ] = H(zτ ;λτ )− H(z0, λ0)
Work is a RANDOM quantity (p[W ;λ])

Reprinted from Campisi et.
al.(2011)

Two ingredients

Dynamical microreversibility

Initial Gibbs state

Results

Crooks (1999)

p[W ;λ]

p[−W ; λ̃]
= eβ(W−∆F )

Follows the Jarzynski equality

< e−βW >λ= e−β∆F

Giampiero Marchegiani Fluctuation Theorems for classical and quantum systems



Fluctuation Theorems: Classical Physics

Microscopic viewpoint: ∀z0 −→W [z;λ] = H(zτ ;λτ )− H(z0, λ0)
Work is a RANDOM quantity (p[W ;λ])

Reprinted from Campisi et.
al.(2011)

Two ingredients

Dynamical microreversibility

Initial Gibbs state

Results

Crooks (1999)

p[W ;λ]

p[−W ; λ̃]
= eβ(W−∆F )

Follows the Jarzynski equality

< e−βW >λ= e−β∆F

Giampiero Marchegiani Fluctuation Theorems for classical and quantum systems



Fluctuation Theorems: Classical Physics

Microscopic viewpoint: ∀z0 −→W [z;λ] = H(zτ ;λτ )− H(z0, λ0)
Work is a RANDOM quantity (p[W ;λ])

Reprinted from Campisi et.
al.(2011)

Two ingredients

Dynamical microreversibility

Initial Gibbs state

Results

Crooks (1999)

p[W ;λ]

p[−W ; λ̃]
= eβ(W−∆F )

Follows the Jarzynski equality

< e−βW >λ= e−β∆F

Giampiero Marchegiani Fluctuation Theorems for classical and quantum systems



Relation to second principle of thermodynamics

Using Jensen Inequality < e−βW >λ= e−β∆F −→<W >λ≥ ∆F
In particular for ∆F = 0, <W >λ≥ 0 (Kelvin Formulation)

Microscopic version: inequalities valid only on AVERAGE.
Single realization can violate the second law, but are exponentially
suppressed!

Fluctuation relation for entropy:

< e−∆(βE)+
∫
dQ/T >λ= e−∆(β∆F )

Follow Clausius formulation ∆S ≥<
∫
dQ/T >
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Fluctuation Theorem: Quantum Physics

Reprinted from Campisi et
al. (2011)

Substitutions

H(z, λt) −→ H(λt)

ρ(z, λt) −→ %(λt) =
e−βH(λτ )

Z(λt)

Z (λt) −→ Z(λt) = Tr e−βH(λτ )

φt,0[z0;λ] −→ Ut,0[λ] = T e−
i
~
∫ t

0 dsH(λs)

W −→ ???

What is quantum work?

Work is NOT a quantum observable, @W hermitian operator

Work it is not a state variable, characterize a process
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Fluctuation Theorem: Quantum Physics

Two projective measurements definition

Measure the energy at times t = 0 and t = τ

W [z;λ] −→ w = Eλtm − Eλ0
n

where
H(λt)|ψλtn,λ >= Eλtn |ψ

λt
n,λ >

Microreversibility+Gibbs Distribution

The same fluctuation relations apply! Tasaki(2000) and Kurchan
(2000)

p[w ;λ]

p[−w ; λ̃]
= eβ(w−∆F ) , < e−βw >λ= e−β∆F
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An application: efficiency of a Quantum Heat Engine

H(t)=H(λt) + HH + HC + ctVC + htVH

Reprinted from Campisi
(2014)

ρ0 =
e−βCH(λ0)

Z0(βC )
⊗ e−βCHC

ZC
⊗ e−βHHH

ZH

P(∆E ,QH ,QC )

P̃(−∆E ,−QH ,−W )
= e(βC−βH)QH−βCW

< e(βC−βH)QH−βCW >= 1

< η >=
<W >

< QH >
≤ 1− TC

TH

Efficiency smaller than Carnot!!!
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Conclusions

Fluctuations Theorems

Rely on microreversibility of motion and initial thermal state

Hold unaltered in classical and quantum physics

Deeper understanding of thermodynamics laws
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