Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

Surfaces and Interfaces: *Ab-initio* calculations for the study of material and design of devices Pre-Thesis

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

21-10-2015

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → < E →</p>

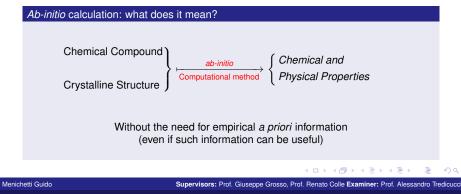
Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

Materials science

We need novel materials for:

- Energy harvesting, conversion, storage, efficiency
- Environmental protection and reparation
- Health care and biomedical engineering
- Pharmaceuticals (crystallization, stability, polytypes)
- Monitoring safety of foods
- Information and communication technologies
- Fundamental science (graphene and 2D materials, topological insulators, entangled spins for quantum computing, high-T c)
- Experimental science (detectors, sensors, magnets)

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci


イロト イヨト イヨト イヨト

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] 000000	PDIF-CN ₂ /Silicon [Completed]	

Thesis Intent: Surface and Interface science

Surfaces and Interfaces between Organic and Inorganic Materials

- Inorganic/Inorganic Interface: Graphene on crystalline (0001) SiO₂
- Organic/Inorganic Interface: PDIF-CN₂ Organic crystal on crystalline (001) Silicon
- Organic/Organic Interface: PCBM Organic crystal on P3HT Polymer

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] 000000	PDIF-CN ₂ /Silicon [Completed]	

Theoretical summary (I)

Electrons and nuclei Hamiltonian

$$\begin{aligned} H_{tot} &= \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{I} \frac{\mathbf{p}_{I}^{2}}{2M_{I}} + \sum_{i} V_{nucl}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \frac{1}{2} \sum_{l \neq J} \frac{z_{l} z_{J} e^{2}}{|\mathbf{R}_{J} - \mathbf{R}_{J}|} \\ V_{nucl}(\mathbf{r}) &= -\sum_{I} \frac{z_{I} e^{2}}{|\mathbf{r} - \mathbf{R}_{I}|} \end{aligned}$$

Density Functional Theory (DFT)

- Hohemberg-Kohn Theorem: bijective relation Electron charge density↔Potential
- Kohn-Sham equations

$$= \left[-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$

$$V_{xc}(\mathbf{r}) = \frac{\partial L_{xc}[n]}{\delta n(\mathbf{r})}.$$

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

イロト イポト イヨト イヨト

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] 000000	PDIF-CN ₂ /Silicon [Completed]	

Theoretical summary (II)

Exchange-Correlation functionals

- Local-Density-Approximation (LDA) $E_{xc}^{LDA}[n] = \int \epsilon_{xc}(n(\mathbf{r}))n(\mathbf{r})d\mathbf{r}$
- Generalized Gradient Approximation (GGA)
 - $E_{xc}[n(\mathbf{r})] = \int \epsilon_{xc}(n(\mathbf{r})) F_{xc}(n(\mathbf{r}), |\nabla n(\mathbf{r})|) n(\mathbf{r}) d\mathbf{r}$

Hellmann-Feynman Theorem and the geometrical optimization problem

$$\blacksquare H(\lambda) \to H_e(\mathbf{r}; \mathbf{R})$$

$$H_{e}(\lambda)\psi_{n}(\mathbf{r};\mathbf{R}) = E_{n}(\lambda)\psi_{n}(\mathbf{r};\mathbf{R})$$

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

Theoretical summary (III): long range interaction

GRIMME - Van der Waals interaction

$$egin{aligned} E_{KS-vdW} &= E_{KS} + s_6 rac{1}{2} \sum_{i
eq j} rac{C_6^{ij}}{R_{ij}^6} f_{dmp}(R_{ij}) \ f_{dmp}(R_{ij}) &= rac{1}{1 + exp(-d(rac{R_{ij}}{R_r} - 1))} \quad R_{ij} = |R_i - R_j \end{aligned}$$

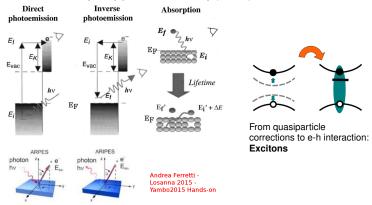
Each pair contributes a R_{ij}^{-6} , f_{dmp} is a dumping function that works as a cutoff, R_r is the vdW radii for the two ions, s_6 , C_6^{ij} , d come from experimental data

Hybrids

Menichetti Guido

Combine orbital dependent HF exchange energy with explicit DF E_{xc} Examples: B3LYP, HSEsol

- Heavier calculation
- 2 Better approximation of some properties (GAP)


Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

・ロット (四) (日) (日) (日)

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] 000000	PDIF-CN ₂ /Silicon [Completed]	

Excited States and Excitons

DFT is a Ground State Theory \rightarrow NOT excited states We need more \rightarrow Many body perturbation theory (MBPT)

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	
Codes	s Used				

Quantum ESPRESSO (QE)

Basis set: Plane Waves (PW)

CRYSTAL14

 \blacksquare Linear Combination of Atomic Orbitals (LCAO) approximation \rightarrow Basis Set: Gaussians

WAN-T (WANnier- Transport)

- Basis Set: Localised Wannier functions
- Landauer's approach: $T(E) = Tr(\Gamma_L G^r \Gamma_R G^a)$

$$I(V) = \frac{2e}{h} \int T(E)[f(E - \mu_L) - f(E - \mu_R)]dE$$

YAMBO

- Basis Set: PW
- Many Body Perturbation Theory (MBPT)
- Optical Properties, Excitons, Bethe-Salpeter

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

Graphene on SiO₂

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

ъ

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

Production and processing

Mass production: scalable processes

- Micromechanical cleavage
- Liquid phase exfoliation
- Thermal exfoliation
- Chemical Vapour Deposition (CVD)
- Synthesis on SiC

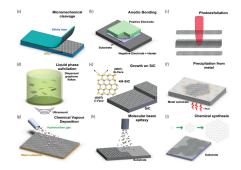


Figure : F. Bonaccorso et. al.,Materials Today **15**, 564 (2012) "Production and processing of graphene and 2d crystals"

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

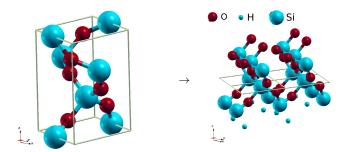
A D > A D >

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

Graphene/SiO₂

Why Graphene/SiO₂ interface?

- Different attempts to synthesize Graphene call for accurate theoretical investigation.
- It is essential to understand and control at the nanoscale its interaction with the supporting substrates.
- SiO₂ is one of the most important and common substrate for application in electronic.


Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

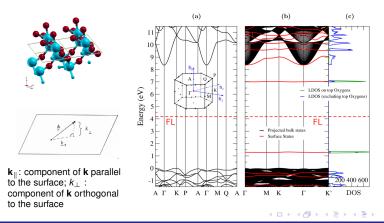
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] ●○○○○○	PDIF-CN ₂ /Silicon [Completed]	
Geometrical s	structure descri	ption			
SiO ₂ :	3D→2I	D			

 α -quartz SiO₂ Bulk Crystal: a=4.913 Å, c=5.405 Å Slabcut (0001) O-terminated Surface

Menichetti Guido

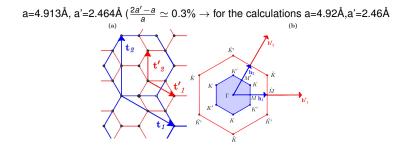
Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci


< ロ > < 同 > < 三 >

ъ

Geometrical structure description

Geometrical relaxation with fixed cell parameters


The Total Energy minimization checks: $\Delta E < 10^{-7}$ u.a., RMS of the gradient < 0.0003 a.u, RMS of the displacement < 0.0012 a.u.

Menichetti Guido

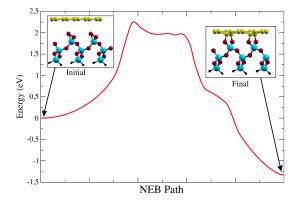
Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

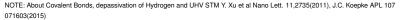
Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] ○○●○○○	PDIF-CN ₂ /Silicon [Completed]			
Geometrical structure description							
Graph	ene						

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

A D > <
 A +
 A +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

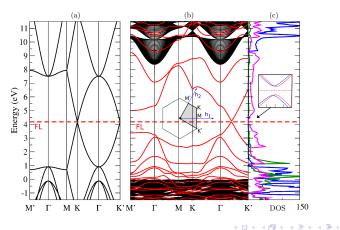

★ Ξ → ★ Ξ →

3

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	
Electronic bar	nd structure				

Graphene/SiO₂: Geometrical Relaxation (fixed cell parameter)

Menichetti Guido


Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

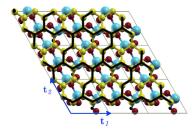
A D > A D >

-

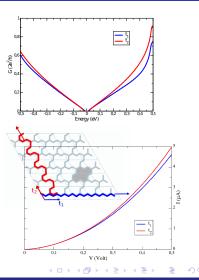
Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]			
Electronic band structure							
Graphene/SiO ₂ bands structure							

- Left: Graphene 2x2 cell
- Right: Graphene/SiO₂ relaxed with projected DOS Graphene/SiO₂

Menichetti Guido


Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

3


Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	
I-V characteri	stics				

Asymmetry in Conductance and electrons current

Landauer's approach: $T(E) = Tr(\Gamma_L G^r \Gamma_R G^a)$ $I(V) = \frac{2e}{h} \int T(E)[f(E - \mu_L) - f(E - \mu_R)]dE$

- Graphene/SiO₂ → corrugation: C-O covalent bonds
- Band gap opening, Band Profile modulation
- Modification of π π carbon conjugation: preferred directions for conduction

Menichetti Guido

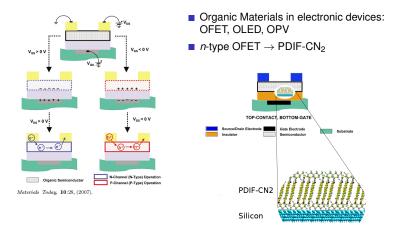
Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

PDIF-CN₂/Silicon

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

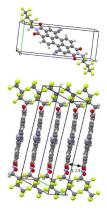

< D > < B >

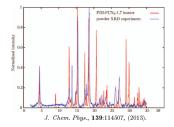
э.

3

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	

Introduction


Menichetti Guido

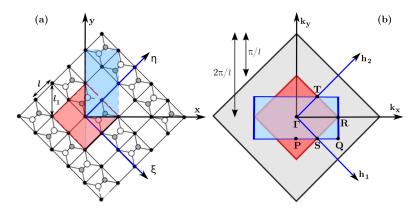

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

<ロ> <同> <同> < 同> < 三> < 三

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] 000000	PDIF-CN ₂ /Silicon [Completed] •00000	
Modeling the	interface				

PDIF-CN₂ crystal Structure

- XRD on crystal powder + *ab-initio* calculation → Geometrical structure
- **a** $\pi \pi$ stacking d = 3.2Å
- triclinic cell: a = 5.135Å, b = 7.385Å, c = 19.598Å, $\alpha = 92.35$ deg, $\beta = 82.22$ deg, $\gamma = 93.25$ deg.


Menichetti Guido

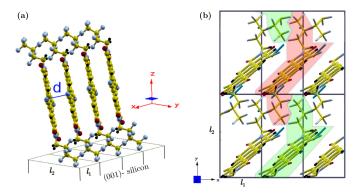
Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

Surface Silicon reconstructed and Simulation Cell (I)

(001) Silicon surface unit-cell lattice parameter I=3.83Å

a) Direct lattice and Dimer structure; b)Corresponding Brillouin zones

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci


A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Menichetti Guido

Surface Silicon reconstructed and Simulation Cell (2)

The distance between adjacent perylene planes d = 3.4Å

Side (a) and top (b) view of the side-on arrangement; PDIF-CN₂(66 atoms)+4 Silicon Layers (16 atoms)+ 1 Hydrogen Layer(4 atoms)

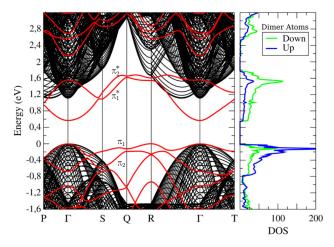

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

Image: A matrix

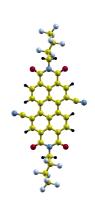
Surfaces and Interfaces: Ab-initio calculations for the study of material and design of devices

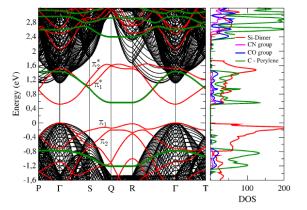
Menichetti Guido

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	
Modeling the	interface				

DFT electronic band structure and projected density of states of Relaxed p(2x2) reconstructed Si surface

Menichetti Guido


Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci


< D > < B >

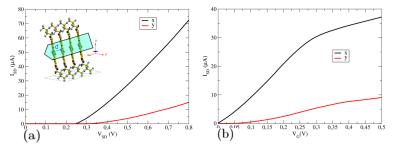
• 3 >

ъ

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] 000000	PDIF-CN ₂ /Silicon [Completed]	
Modeling the	interface				

DFT electronic band structure and projected density of states of PDIF-CN2 on the relaxed p(2x2) reconstructed Si surface.

Menichetti Guido


Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

 $\langle \Box \rangle \langle \Box \rangle$

• E •

ъ

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted]	PDIF-CN ₂ /Silicon [Completed]	
Modeling the interface					

(a) Output plots for the I_{SD}-V_{SD} characteristics at zero gate voltage V_G=0V, and (b) transfer plots of I_{SD} at different biases, in linear regime (V_{SD} = 0.25V), for PDIF-CN₂ on Si. The black (red) line corresponds to current flowing along the *x* (*y*) directions. In the inset is reported schematically the network of π -conjugated perilene planes which are stacked along the *x* direction.

Menichetti Guido

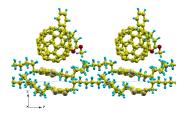
Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

ъ

Overview	Outline	Computational Methods	Graphene/ <i>SiO</i> 2 [Submitted] 000000	PDIF-CN ₂ /Silicon [Completed]	Work in progress

Work in progress

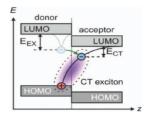
Menichetti Guido


Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci

ъ

Organic Photovoltaic cell: PCBM on P3HT

Work Done:


Geometrical structure and Band Structure

Relaxed geometry of a PCBM molecule over 2x1 cell of P3HT: 288 atoms per cell, 794 electrons.

Work in progress:

Optical Properties and excitons

A schematic diagram depicting the dissociation of an exciton to form a charge transfer exciton across a donor-acceptor interface. E_{ex} is the single exciton binding energy and E_{CT} is the charge transfer exciton binding energy.

Menichetti Guido

Supervisors: Prof. Giuseppe Grosso, Prof. Renato Colle Examiner: Prof. Alessandro Tredicucci