Università di Pisa PhD in Physics - XXIX Cycle 23.10.2015

Study of the QCD phase diagram with the method of analytic continuation

Michele Mesiti

Based on works with C. Bonati¹, M. D'Elia¹, M. Mariti¹, F. Negro¹ and F. Sanfilippo² (PRD90 114025, PRD92 054503)

Dipartimento di Fisica dell'Università di Pisa and INFN, Sezione di Pisa, Pisa, Italy
 School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

• □ ▶ • • □ ▶ • • □ ▶ •

Outline

- The phase diagram for strongly interacting matter Theory: the chiral/deconfinement crossovers, Experiments: chemical freeze-out point
- Theory from first principles: Lattice QCD Basics, $T \neq 0, \mu_{B} \neq 0 \rightarrow \dots$
- The sign problem and proposed solutions Taylor expansion, Reweighting, Analytic continuation (...)
- The critical line of QCD and Analytic continuation Basics, $T \neq 0, \mu_B \neq 0 \rightarrow$ the sign problem!
- Renormalized observables and the definitions of $T_c(\mu)$ Chiral condensate, renormalization (I) and (II), Chiral susceptibility
- Numerical setup Discretization used, Parameters, Statistics
- Numerical results Finite size effects, Effects of $\mu_s \neq 0$, Effects of different definitions of $T_c(\mu)$,Continuum limit
- Conclusions

・ロト ・同ト ・ヨト ・ヨト

Strongly interacting matter at nonzero T...

- Low temperature: Confinement, (spontaneous) chiral symmetry breaking
- High temperature: Deconfinement, chiral symmetry restoration

Left: Polyakov loop $(e^{-F_{Q}/T})$ as a function of temperature. Right: Chiral condensate $(\sim \langle \bar{\psi}\psi \rangle)$ (from JHEP 1009 (2010) 073)

Lattice data suggest no real transitions, only crossovers

...and at nonzero μ_{B}

Baryon Chemical potential

Path Integral formulation: $Z = \int DAD\bar{\psi}D\psi e^{-i\int d^{4}\times \mathcal{L}[A,\bar{\psi},\psi]}$ $D_{\mu} = \partial_{\mu} - ig\hat{A}_{\mu}, \ (\hat{F}_{\mu\nu} = [D_{\mu}, D_{\nu}])$ $\mathcal{L} = -\frac{1}{2g^{2}} \operatorname{Tr}\left\{\hat{F}_{\mu\nu}\hat{F}^{\mu\nu}\right\} + \sum_{f} \bar{\psi}_{f} \left(i\gamma^{\mu}D_{\mu} - m_{f}\right)\psi_{f}$

Chiral Symmetry: In the vanishing mass limit the Lagrangian is invariant under the transformations

$$\psi_L' = U\psi_L, \ \psi_R' = U^{\dagger}\psi_R$$

Where ψ_L and ψ_R represent the left- and right-handed parts of all the spinors, and U is a $SU(N_f)$ matrix which mix different flavours. The light quark condensate $\langle \bar{u}u + \bar{d}d \rangle$ is an order parameter for chiral symmetry breaking.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Lattice QCD

- Wick Rotation ($t = -i\tau$), Torus [$L \times t$] geometry ([anti]periodic boundary conditions¹), Hypercubic lattice (lattice spacing *a*)
- The fermion fields live on the vertices, while the gauge fields are replaced by the gauge links (Parallel transport operators, SU(3) matrices $U_{\mu}(x) \simeq e^{-igaA_{\mu}(x)}$).
- Finite number of degrees of freedom ⇒ The functional integral become a finite dimensional integral, evaluable with Montecarlo and Importance Sampling methods:

$$Z = \int DU e^{-S_{\boldsymbol{G}}[U]} \prod_{f} \det M_{f}[U]$$

Various possible choices for the discretized action, for both S_{G} and M_{f}

• The Wick rotation + temporal periodic boundary conditions allow us to study QCD at finite temperature:

$$t = -i\tau \Rightarrow \operatorname{Tr} e^{-iHt} = \operatorname{Tr} e^{-H\tau} = \operatorname{Tr} e^{-H/T} [\tau = 1/T]$$

• Continuum and Thermodynamic limits (a
ightarrow 0, $L
ightarrow \infty$)

¹Antiperiodic for fermion fields in the temporal direction

Chemical potential and sign problem

In the **continuum theory**, a chemical potential coupled with quark number can be introduced:

$$\mu_f N_f = \mu_f \int d^3 x \; \bar{\psi}_f \gamma_0 \psi_f$$

On the lattice, the quark chemical potential associated to the flavour f is introduced by multiplying the gauge links in the fermion matrix $M_f[U]$ in the temporal direction by $e^{-a\mu_f}$.

Unfortunately, this causes the so called sign problem. When $\mu_f = 0$,

$$\left({\not\!\!D} + m
ight)^\dagger = \gamma_5 \left({\not\!\!D} + m
ight) \gamma_5 \
ightarrow {
m det} \left({\not\!\!D} + m
ight) \in \mathbb{R}$$

When $\mu_f \neq 0$ this is not true any more:

$$\gamma_{5}\left(\not D+m-\gamma_{0}\mu\right)\gamma_{5}=\left(-\not D+m+\gamma_{0}\mu\right)=\left(\not D+m+\gamma_{0}\mu^{*}\right)^{\dagger}$$

\Rightarrow The fermion determinant is complex!²

- \bullet Analytic Continuation from imaginary μ
- Taylor expansion from $\mu=0$ [precision issues with higher order derivatives on the lattice]
- Reweighting from the $\mu=0$ ensemble $_{\rm [scales \ badly \ with \ volume]}$
- Canonical method [the sign problem is back in a different form]

• ...

伺下 イヨト イヨト

At lowest order in μ , the pseudocritical line can be parametrized as:

$$\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 + O(\mu^4)$$

(odd order terms are forbidden by charge conjugation symmetry of QCD)

The sign problem and analytic continuation

For purely imaginary μ , the fermion determinant is real positive, and the sign problem is non existent.

With the transformation $\mu_B = i\mu_{B,I}$, the pseudocritical line parametrization is modified as:

$$\frac{T_c(\mu_{B,I})}{T_c} = 1 + \kappa \left(\frac{\mu_{B,I}}{T_c(\mu_{B,I})}\right)^2 + O(\mu_{B,I}^4)$$

Renormalization of the chiral condensate

$$\langle \bar{\psi}\psi
angle_{ud} = rac{T}{V} rac{\partial \log Z}{\partial m_{ud}} = 2rac{T}{V} \langle \mathrm{Tr} M_l^{-1}
angle = \langle \bar{u}u
angle + \langle \bar{d}d
angle$$

We have considered two renormalizations:

• As in [Cheng et al., 08]:

$$\langle \bar{\psi}\psi\rangle_{(1)}^{r} \equiv \frac{\langle \bar{\psi}\psi\rangle_{ud}(T) - \frac{2m_{ud}}{m_{s}}\langle \bar{s}s\rangle(T)}{\langle \bar{\psi}\psi\rangle_{ud}(0) - \frac{2m_{ud}}{m_{s}}\langle \bar{s}s\rangle(0)}$$

2 Alternatively [Endrodi et al., 11]:

$$\langle \bar{\psi}\psi\rangle_{(2)}^{r} \equiv \frac{m_{ud}}{m_{\pi}^{4}} \left(\langle \bar{\psi}\psi\rangle_{ud} - \langle \bar{\psi}\psi\rangle_{ud}(T=0)\right)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Renormalized chiral susceptibility

$$\chi_{\bar{\psi}\psi} \equiv \frac{\partial \langle \bar{\psi}\psi \rangle_{ud}}{\partial m_l}$$

We have chosen this renormalization [Y.Aoki et al., 06]:

$$\chi_{\bar{\psi}\psi}^{r}(T) \equiv m_{ud}^{2} \left[\chi_{\bar{\psi}\psi}(T) - \chi_{\bar{\psi}\psi}(0) \right]$$

We use the dimensionless quantity $\chi^{r}_{ar{\psi}\psi}(\mathcal{T})/m_{\pi}^{4}.$

(1日) (1日) (1日)

Defining T_c

Fit for the chiral condensates (I) and (II):

$$\langle \bar{\psi}\psi \rangle^{r}(T) = A_{1}+B_{1} \arctan \left[C_{1}\left(T-T_{c}
ight)
ight]$$

Fit at the peak for the **renormalized** chiral susceptibility:

$$\chi^{r}_{\bar{\psi}\psi}(T) = rac{A_2}{(T-T_c)^2 + B_2^2}$$

Numerical setup

- Study of the $\mu_s = \mu_I \neq 0$ (32³x8 only) and $\mu_s = 0$ cases.
- Tree level Symanzik improved gauge action with $N_f = 2 + 1$ flavours of 2-stouted staggered fermions.
- At the physical point (line of constant physics, parameters taken from [Aoki *et al.*, 09]) $N_t = 6, 8, 10, 12$ lattices.
- Also performed simulations at zero temperature for subtractions $(32^4,48^3 \times 96)$.
- Observables evaluated with noisy estimators, with 8 random vectors per quark.

Simulations run on IBM BG-Q at CINECA (Bologna, Italy) and on the Zefiro Cluster (INFN - Pisa).

Lattice	$16^3 imes 6$	$24^3 \times 6$	$32^3 \times 6$
$i\mu/(\pi T)$	0.00 0.20 0.24 0.275	0.00 0.24 0.275	0.00 0.24 0.275
Lattice	$32^3 imes 8$	$40^{3} \times 10$	$48^3 imes 12$
$i\mu/(\pi T)$	0.00 0.10 0.15	0.00 0.20	0.00 0.20
	0.20 0.24 0.275 0.30	0.24 0.275	0.24 0.275

 $) \land (\sim$

Estimates of κ . Black : Renormalized Chiral Condensate (1), Red : Renormalized Chiral Susceptibility ; Right: The chiral condensate on the $24^3 \times 6$ lattice, with the data for $\mu_I = 0$ on the $32^3 \times 6$ lattice

\Rightarrow Aspect ratio 4 is enough.

(Renormalized chiral susceptibility)

(From [Bonati et al., 15])

Results for κ varying the μ fit range:

Empty Red: κ , linear fit ($\mu_{s} = \mu_{I}$ data) Full Red: κ , lin+quad fit ($\mu_{s} = \mu_{I}$) Empty Black: κ , linear fit ($\mu_{s} = 0$) Empty Black: κ , lin+quad fit ($\mu_{s} = 0$) Right: κ from combined (lin+quad) fit

▶ < ∃ ▶

-

κ with another prescription

In order to better compare our results with those of [Endrodi *et al.*, 11] (same action discretization, but using the Taylor expansion method), we have located $T_c(\mu_B)$ using the chiral condensate (II), using the following equation

$$\langle \bar{\psi}\psi\rangle_{(2)}^{r}(T_{c}(\mu_{B}),\mu_{B}) = \langle \bar{\psi}\psi\rangle_{(2)}^{r}(T_{c}(0),0)$$

Our result for the curvature using this method is $\kappa = 0.0110(18)$, to be compared with $\kappa = 0.0066(20)$.

Figure from [Endrodi et al., 11]

Critical line and continuum Limit of κ

We evaluated the curvature κ for each N_t (6,8,10,12) and then performed the continuum limit extrapolation on κ itself, assuming finite lattice spacing corrections are of the form $const/N_t^2$

Left: Critical lines obtained from the 48³×12 lattice, and fits in the form $T_{c}(\mu_{B,I})/T_{c} = 1 + \kappa [\mu_{B,I}/\pi T_{c}(\mu_{B,I})]^{2}.$ Right: continuum extrapolations of the critical line curvature κ .

Continuum extrapolated results for the curvature:

$$\begin{array}{rcl} \kappa_{\bar{\psi}\psi,1} &=& 0.0134(13) \\ \kappa_{\bar{\psi}\psi,2} &=& 0.0127(14) \\ \kappa_{\chi} &=& 0.0132(10) \\ \end{array}$$

For the renormalized chiral condensates, we used the formula

$$\langle \bar{\psi}\psi \rangle^{r}(T) = A_{1} + B_{1} \arctan \left[C_{1} \left(T - T_{c}\right)\right]$$

to fit the data from all values of N_t simultaneously. We added a N_t dependency to T_c ($T_c(N_t) = T_c(N_t = \infty) + const./N_t^2$) and a similar one to C_1 .

• For the renormalized chiral susceptibility, we used the formula

$$\chi^{r}_{\bar{\psi}\psi}(T) = rac{A_2}{(T-T_c)^2 + B_2^2}$$

where we added a dependency on N_t similar to $T_c(N_t) = T_c(N_t = \infty) + const./N_t^2$ for all parameters.

・ロト ・同ト ・ヨト ・ヨト

-

Continuum limit of Observables

Up Left: Continuum limit on the Renormalized chiral susceptibility.

Right: Width and height of the peak of the renormalized chiral susceptibility (B_2 and $\chi^{r,max}_{\bar{\psi}\psi}$). Down Left: Continuum limit of the renormalized chiral condensate (1)

イロト イポト イヨト イヨト

э

Continuum limit of Observables Critical line from continuum extrapolated T_{cs}

Values of T_c obtained with the continuum limit of the observables, fit with the form $T_c(\mu_{B,I})/T_c = 1 + \kappa [\mu_{B,I}/\pi T_c(\mu_{B,I})]^2$.

Comparison with other determinations

Left: Comparison with other lattice determinations. **Right:** Tentative continuation to real chemical potential, and comparison to the experimental data from chemical freezeout.

- The finite size effects have been studied, and we deemed aspect ratio 4 sufficient for the present level of accuracy.
- We performed an extensive check to compare our determinations with the one of other groups.
- We investigated the effects of including a nonzero strange quark potential ($\mu_s = \mu_I = \mu$). We have confirmed the presence of a quartic contribution. Considering such contribution, the curvature of the critical line for $\mu_s = \mu_I$ or $\mu_s = 0$ is compatible within errors.
- We performed a continuum scaling analysis in two ways, directly on κ and on the observables. The resulting estimates of κ are in agreement. Our prudential estimate is $\kappa = 0.0135(20)$.

・ 同 ト ・ ヨ ト ・ ヨ ト