Critical scaling of quantum systems at phase transitions

Jacopo Nespolo

Dipartimento di Fisica dell'Università di Pisa and INFN, Sezione di Pisa

Pisa, 22 October 2014

The problem

What we would like condensed matter systems to look like...

...and what they really look like.

Phase transitions

At the change of a parameter, the equilibrium state of some systems qualitatively change.

Hamiltonian of a many-body system:

H(g).

Free energy density:

$$f[H] \equiv \frac{1}{V} \mathcal{F}[H] = -\frac{1}{\beta} \ln \operatorname{Tr} e^{-\beta H}$$

- At infinite volume, for some value of g or β, f becomes non-analytic ⇒ critical point.
- No transition at finite volume!

Quantum phase transitions

 ${\cal T}=0$ transitions of quantum systems.

- Change of the properties of the ground state.
- Closing of the energy gap $\Delta(g_c) \Longrightarrow$ quantum critical point.
- Infinite volume: level crossing.
- Finite volume: **avoided** level crossing.

Order of phase transitions

Continuous

- Ground state properties change continuously.
- **Diverging** correlation length $\xi \sim |g g_c|^{-\nu}$.
- Closing of the gap as $\Delta \sim |g - g_c|^{z\nu} \sim \xi^{-z}.$

Discontinuous or first order

- ► First order derivatives of *f*(*g*) are **discontinuous**.
- Finite correlation length at the transition.
- Phase coexistence.
- Sensitivity to boundary conditions.

How is the critical behaviour **modified** in finite systems?

Finite-size scaling (FSS) at continuous transitions

At the thermodynamic limit, **critical scaling**. After a blocking transformation by a factor *b*:

$$\mathcal{F}_{\text{sing}}(u_1, u_2, \ldots) = b^{-d} \mathcal{F}_{\text{sing}}(b^{y_1} u_1, b^{y_2} u_2, \ldots)$$

Scaling dimensions: $y_{1,2} > 0$ (relevant perturbations); $y_{i>2} \le 0$ (irrelevant).

For **homogeneous finite systems** of size L, $u_L \sim L^{-1}$ is a new relevant variable:

$$\mathcal{F}_{\text{sing}}(u_1, u_2, \dots, u_L) = b^{-d} \mathcal{F}_{\text{sing}}(b^{y_1} u_1, b^{y_2} u_2, \dots, bu_L)$$
$$\mathcal{F}_{\text{sing}}(u_1, u_2) = L^{-d} \mathcal{F}_{\text{sing}}(L^{y_1} u_1, L^{y_2} u_2) + \text{corrections}$$

FSS at continuous transitions: results

Quantum Monte Carlo studies of the finite temperature superfluid-Mott insulator transitions of

▶ 2*d* Bose-Hubbard model.

[G.Ceccarelli, JN, A.Pelissetto and E.Vicari, Phys. Rev. B 88, 024517 (2013)]

▶ 3*d* Bose-Hubbard model.

[G.Ceccarelli and JN, Phys. Rev. B 89, 054504 (2014)]

What happens at first order transitions?

FSS at first order transitions?

- No diverging correlation length, but coexistence of large domains in the same phase ⇒ effective ξ.
- Sensitivity to boundary conditions!

FSS at first order transitions: results

Ferromagnetic Ising chain in transverse and parallel field.

[M.Campostrini, JN, A.Pelissetto and E.Vicari, Phys. Rev. Lett. 113, 070402 (2014)]

FSS at first order transitions

Quantum Potts model

$$H_{\text{Potts}} = -\sum_{i=1}^{L-1} \sum_{k=1}^{q-1} \Omega_i^k \Omega_{i+1}^{q-k} - g \sum_{i=1}^{L} \sum_{k=1}^{q-1} M_i^k$$
$$\Omega = \begin{pmatrix} 1 & & \\ & \omega & \\ & & \ddots & \\ & & & \omega^{q-1} \end{pmatrix} \quad M = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & & 1 \\ 1 & & & 0 \end{pmatrix} \quad \omega = e^{2i\pi/q}$$

Ferro-para FOQT at $g_c = 1$ for any q > 4.

$$\begin{split} \Delta &\sim \Delta_\infty + c L^{-1} \text{ for open boundaries.} \\ \Delta &\sim L^{-1} \text{ for self-dual boundaries.} \\ \text{Scaling ansätze} \end{split}$$

$$\begin{cases} \Delta(L,g) = \Delta(L,g_c) f_{\Delta}(\kappa), \\ m(L,g) = m_0 f_m(\kappa), \end{cases} \qquad \qquad \kappa = \frac{(g-1)L}{\Delta(L,g_c)}. \end{cases}$$

FSS at first order transitions

How does inhomogeneities change this?

What's different with inhomogeneities?

External potential U coupled to the system,

$$U(\mathbf{x}) = J\left(\frac{|\mathbf{x}|}{\ell}\right)^p,$$

with $\ell \equiv \text{trap size}$.

- ► Trap shallow close to the centre: As long as $\xi \ll \ell^{\theta}$, approximately homogeneous.
- For $\xi \gtrsim \ell^{\theta}$, distortion of universal scaling.

Trap-size scaling at continuous transitions

- ▶ Inspired by FSS. $U(\mathbf{x})$ yields a new relevant field u_v .
- Must relate the correlation length to the trap size:

$$\xi \sim \ell^{\theta}, \qquad \theta = y_v^{-1} \equiv \text{trap exponent} < 1.$$

Must reduce to FSS in the physical limits.

The TSS limit

$$\begin{cases} |\mathbf{x}| \equiv r \to \infty, \\ \ell \to \infty \end{cases} \qquad \zeta \equiv r\ell^{-\theta} = \text{const.} \end{cases}$$

The modified critical behaviour should appear when $r\ell^{-\theta} \approx 1$.

Trap-size scaling at continuous transitions

The exponent θ

By field theoretical means,

$$\theta = \frac{p}{d - y_{\Phi} + p}.$$

(y_{Φ} the scaling dimension of the field to which $U(\mathbf{x})$ couples)

Scaling ansatz

F

$$\mathcal{F}_{
m sing}(u_1, u_2, u_v, {f x}) = b^{-d} \mathcal{F}_{
m sing}(b^{y_1} u_1, b^{y_2} u_2, b^{y_v} u_v, {f x}/b)$$

ixing $u_v b^{y_v} = 1$,

$$\mathcal{F}_{\text{sing}}(u_1, u_2, \mathbf{x}) = \ell^{-d\theta} \mathcal{F}_{\text{sing}}(\ell^{y_1\theta} u_1, \ell^{y_2\theta} u_2, r\ell^{-\theta})$$

[Campostrini, Vicari, Phys.Rev.Lett. 102, 240601 (2009)]

- Proceed in analogy with the continuous case.
- First order transitions are characterised by extremal effective critical exponents.

[B.Nienhuis and M.Nauenberg, Phys. Rev. Lett. 35, 477 (1975)]

θ exponent

Conjecture

$$\theta = \frac{p}{y_g + p},$$

with $y_g = D \equiv d + z$. (z the dynamic critical exponent). • Verify a posteriori.

Quantum Potts, p = 1, z = 1.

Quantum Potts, p = 1, z = 1.

Ferromagnetic Ising chain, p = 1, z = 2.

Conclusions

- Critical phenomena in realistic conditions can be described by FSS and TSS.
- FSS and TSS can be applied to quantum transitions.
- ...and in particular to quantum first order transitions.

Future developments

- The low energy spectrum of the quantum Potts model may deserve a closer look.
- Bosonic mixtures present a rich phase diagrams for further tests of FSS and TSS.

Thanks.

Slides will be made available on www.pi.infn.it/~jnespolo/physics

FSS - Corrections from irrelevant perturbations

- Irrelevant operators cause corrections to FSS.
- Let ω = −y₃ = scaling dimension of first irrelevant perturbation.

At the transition ($u_1 = 0$),

$$\mathcal{F}_{\text{sing}}(u_2) = L^{-d/y_1} \left[f(u_2 L^{-y_2/y_1}) + L^{-\omega} f_{\omega}(u_2 L^{-y_2/y_1}) \right] + \text{corr.}$$

Universality

► *f* is a **universal** function; one for each RG invariant observable.

$$\mathcal{O} = L^{y_{\mathcal{O}}/y_1} f_{\mathcal{O}}(u_2, L).$$

FSS at first order transitions

Ferromagnetic Ising chain in transverse field (g < 1).

$$H_{\text{Ising}} = -\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - h \sum_{i} \sigma_{i}^{z} - g \sum_{i} \sigma_{i}^{x}$$

First order quantum transition (FOQT) at $g_c = 0$ for any h < 1. $m(i) = \langle \sigma_i^x \rangle$ jumps from $+m_0$ to $-m_0$ across the transition.

$$\Delta \sim h^L$$
 with open boundaries; $\Delta \sim L^{-2}$ with fixed-opposite (kink) boundaries.

Scaling ansätze

$$\begin{cases} \Delta(L,g) = \Delta(L,g_c) f_{\Delta}(\kappa), \\ m(L,g) = m_0 f_m(\kappa), \end{cases} \qquad \qquad \kappa = \frac{gL}{\Delta(L,g=0)}.$$

[M.Campostrini, JN, A.Pelissetto and E.Vicari, Phys. Rev. Lett. 113, 070402 (2014)]

TSS: The exponent θ at continuous transitions

Suppose that $U(x) = v^p |\mathbf{x}|^p$ couples to $\Phi(\mathbf{x})$, of scaling dimension y_{Φ} .

$$P_U = \int d^d x \ v^p |\mathbf{x}|^p \Phi(\mathbf{x}) \quad \Rightarrow \quad p(y_v - 1) + y_\Phi = d$$

$$heta \equiv y_v^{-1} = rac{p}{d - y_\Phi + p}$$

Scaling ansatz

$$\mathcal{F}_{\text{sing}}(u_1, u_2, \boldsymbol{u_v}, \mathbf{x}) = b^{-d} \mathcal{F}_{\text{sing}}(b^{y_1} u_1, b^{y_2} u_2, \boldsymbol{b^{y_v}} \boldsymbol{u_v}, \mathbf{x}/b)$$

Fixing
$$u_v b^{y_v} = 1$$
,
 $\mathcal{F}_{sing}(u_1, u_2, \mathbf{x}) = \ell^{-d\theta} \mathcal{F}_{sing}(\ell^{y_1\theta} u_1, \ell^{y_2\theta} u_2, r\ell^{-\theta})$

[Campostrini, Vicari, Phys.Rev.Lett. 102, 240601 (2009)]

TSS: What about traps in a finite box?

FSS + TSS

▶ Need to take both *l* and *L* into account.

 $\mathcal{F}_{\text{sing}}(u_1, u_2, u_v, L, r) = L^{-d} \mathcal{F}_{\text{sing}}(L^{y_1 \theta} u_1, L^{y_2 \theta} u_2, Ll^{-\theta}, rl^{-\theta}).$

- Trap simulations always include a hard wall boundary.
- Often $l \ll L$ limit not accessible.

[de Queiroz, dos Santos, Stinchcombe, Phys.Rev.E 81, 051122 (2010)]

Concluding remarks

- No kitten was used to make this presentation.
- This presentation does not use Comic Sans MS.

