

Emission control of Terahertz Quantum Cascade microresonators

Andrea Ottomaniello

Pre-Thesis

XXXII CICLO DI DOTTORATO Dipartimento di Fisica "E. Fermi"

Introduction

Quantum Cascade Laser (QCL)

PhD Pre-thesis, 22 Ottobre 2018

Introduction

Terahertz (THz) radiation

- 1994 Mid-IR QCL demonstration (J. Faist, F. Capasso et al., Science 264, 553)
- 2002 Quantum Cascade Lasers in the THz range (R. Köhler, A. Tredicucci et al., Nature 417, 156)

- Redrawn from K. Fukunaga et al., Proc. of SPIE Vol. 7391 73910D-1, (2009)
- Medical imaging, bio-sensing \rightarrow Not invasive, sensitive to water content
- Security, Quality control \rightarrow Plastic is transparent, material fingerprints
- Observational astrophysics

Introduction

THz QCL challenges

Technological challenges:

 <u>Low-T operation</u> due to longitudinal phonon emission (III-V, phonon energy GaAs: 36 meV) and thermal back-filling, record lasing @~200K (not considering magnetic field confinement)

QCL miniaturization in sub-wavelength devices

Concept

- High quality factors
- High confinement factor

- Simple geometrical objects
- Efficient far-field coupling

Subwavelength devices with regular vertical beam patterns

Concept

$$\vec{E}_{FF} = \frac{i\kappa}{4\pi} \hat{r}_0 \times \int \left[\vec{n} \times \vec{E} - \sqrt{\frac{\mu_0}{\epsilon_0}} \hat{r}_0 \times \left(\vec{n} \times \vec{H} \right) \right] e^{i\kappa \vec{r} \cdot \hat{r}_0} dS$$

Concept

Characterization

Continuous wave laser operation of a dipole-antenna terahertz microresonator, L. Masini, A. Pitanti, (...), A. Tredicucci, Light: Science & Applications 6, e17054 (2017)

A. Ottomaniello

Optomechanics

Basic idea

Bridge fundamental mechanical mode

Whispering gallery mode

Radiation pressure induced OM coupling

 \rightarrow Completely suspended bridge

Optomechanics

OM coupling strength

A. Ottomaniello

Optomechanics

FE simulations

A. Ottomaniello

Fabrication Device architecture

 → Symmetric heterostructure
3-QW LO phonon depletion active region (GaAs/Al0.15Ga0.85As heterostructure)

M. Brandstetter et al. Appl. Phys. Lett. 103, 171113 (2013)

Fabrication Procedure

A. Ottomaniello

Fabrication Procedure

Resin-based wafer bonding on CaF2 substrates

(R. Colombelli, University Paris VII)

Injection engineering

Double-injection scheme

A. Ottomaniello

Injection engineering

Double-injection scheme

A. Ottomaniello

Injection engineering FE simulations

Electrical pumping simulated through the imaginary part of the disk refractive index

A. Ottomaniello

Graphene-based waveguide

hBN-graphene-hBN heterostructure

Monolayer graphene incapsulated in two hexagonal boron-nitride (hBN) membranes

A. Ottomaniello

Combining electronics and photonics new functionalities can be accessed for THz QCL:

dipole-antenna THz microresonator

- Vertical emission
- CW operation, high power
- Low-threshold, sub-wavelength dimension

Implemented functionalities

• Dynamic frequency tuning of the laser emission via optomechanical interaction Platform for active cavity optomechanics

• Emission control (far-field and frequency) via injection engineering Platform for laser physics around EPs

New waveguide design based on hBN-graphene-hBN heterostructure Extreme miniaturization Strong Purcell factor enhancement (threshold-free laser) Emission control (far-field and frequency) by electrostatic gating

Conclusions and perspectives

- Lasers characterization
 - IVL characteristics
 - Spectra
 - Far-field profile

- Fermi energy
- Mobility

Emission control of THz QCL via external optomechanics (self-mixing technique) Measurements next November

in Leeds

Suspended SiN membranes

PhD Pre-thesis, 22 Ottobre 2018

Acknowledgments

Prof. A. Tredicucci

Dr. A. Pitanti

V. Leccese G. Conte

Thank you for the attention

A. Ottomaniello