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Overview

• Non equilibrium dynamics of a many body system

• Non dissipative regime: Observation of the kinetic constraint and the      
facilitation

• Seeded avalanche process

• Dissipative regime: preliminary results of percolation process

• Conclusions and outlook



 Many body systems



 Many body systems

Neural network

Bose Gas Herding behaviour

* P. W. ANDERSON, SCIENCE, 04 AUG 1972, 393-396

“More is different”*



 Many body problem

analytical solution numerical solution

experimental simulation



ground state: trivial

excited state (spin up) 
ground state (spin down)

interaction (only in excited state)

spin flip with rate Γ

 Non-equilibrium dynamics of a many-body system



steady state: trivial (fully mixed)

ground state: trivial

 Non-equilibrium dynamics of a many-body system



steady state: trivial

ground state: trivial

non-equilibrium dynamics: 
possibly complex

 Non-equilibrium dynamics of a many-body system



 Cold cloud of ground state atoms
Ultra-cold atoms in magneto optical trap at T around 150 μK 
(assume positions of atoms to be stationary on timescale of the experiment of a few 
microseconds -> frozen gas approximation)

87Rb

• size of cloud 20-300 μm with up to 
3,000,000 atoms; possibility of focusing 
one beam tightly to realize quasi 1D 
geometry 



• in experiments reported here: 70S 
(repulsive interaction) Rb atoms

• two-photon excitation scheme with Rabi 
frequencies up to 500 kHz

• laser line-width around 500 kHz -> 
coherence times around 0.5 μs

• size of cloud 20-300 μm with up to 
3,000,000 atoms; possibility of focusing 
one beam tightly to realize quasi 1D 
geometry 

 Cold cloud of ground state atoms



 Lifetime: ~ n3 
n=70  ~ 150 μs

Polarizability ~ n7 
van der Waals C6 coefficient ~ 
n11 

→ strong van-der-Waals or 
dipole-dipole interaction; 
orders of magnitude larger 
than contact interaction in 
ultra-cold gases (up to GHz at 
micrometer distances)! 

Rydberg atom

Interaction 

 Cold cloud of ground state atoms

Vi,k =
C6

|ri � rk|6
M. Saffman, T. G. Walker, and K. Mølmer, 
Rev. Mod. Phys. 82, 2313 



In the presence of Rydberg-Rydberg 
interactions, Γ now depends on the 
interparticle distance and on the detuning Δ

V(|ri - rj|) Δ>0
Δ=0

rfac0 rb |ri - rj|

Γi(Δ)

Semiclassical approximation 
(incoherent excitation): 
 Rabi oscillations with Ω -> 
Spin flips with rate 

if γ>> Ω

Kinetic constraints in Rydberg gases



• growth rate per atom only depends on 
mean distance d between excited 
atoms

Blockade constraint:anti-correlated dynamics

M.M. Valado et al., Phys. Rev. A 93, 040701(R) (2016) 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In the presence of Rydberg-Rydberg 
interactions, Γ now depends on the 
interparticle distance and on the detuning Δ

Semiclassical approximation 
(incoherent excitation):
 Rabi oscillations with Ω ->
Spin flips with rate

if γ>> Ω

V(|ri - rj|) Δ>0
Δ=0

rfac0 rb |ri - rj|

Γi(Δ)

Facilitation constraint: correlated dynamics



M.M. Valado et al., Phys. Rev. A 93, 040701(R) (2016) 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Kinetic constraints in Rydberg gases



three stages: 
nucleation, facilitation 
and saturation reflect the 
nature of the constraint 

Facilitation constraint: correlated dynamics

M.M. Valado et al., Phys. Rev. A 93, 040701(R) (2016) 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Facilitation constraint: correlated dynamics

M.M. Valado et al., Phys. Rev. A 93, 040701(R) (2016) 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three stages: 
nucleation, facilitation 
and saturation reflect the 
nature of the constraint 



Seeded avalanche process

Probability to have at least one excitation

P (N > 0) = 1� e�hNseedi



Seeded avalanche process

Probability to have at least one excitation

Triggered the avalanche process:
• tseed =10 µs (red)
• tseed =25 µs (blue)
• tseed =45 µs (green)

C. Simonelli et al.,  J. Phys. B: At. Mol. Opt. Phys. 49 154002 (2016)

P (N > 0) = 1� e�hNseedi



Towards the dissipative regime

anti- correla

V(|ri - rj|) Δ>0
Δ=0

rfac0 rb |ri - rj|

Γi(Δ)

time

 𝜏life  (70S Rydberg state lifetime)

Non Dissipative Regime

t << 𝜏life 



time

 𝜏life  (70S Rydberg state lifetime)

Dissipative RegimeNon Dissipative Regime

t << 𝜏life t >> 𝜏life 

Malossi, N. et al. Phys. Rev. Lett. 113, 023006 (2014)

see also Schempp, H. et al. Phys. Rev. Lett. 112, 013002 (2014)
and H. Weimer,  Phys. Rev. A 91, 063401 (2015)

anti- correla

V(|ri - rj|) Δ>0
Δ=0

rfac0 rb |ri - rj|

Γi(Δ)

Towards the dissipative regime



The percolation is one of the simplest process showing a phase transition. 

• Isotropic Percolation (any preferred direction) 

• Directed Percolation (DP) (one preferred direction in space or in time)
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time

Γ1 < Γ2

Different steady states 
depending on the rates Γ1 and Γ2 

Γ1 > Γ2

Infection spreading process (DP) 

Infection Healing



Facilitation in dissipative Regime  

• Off resonant excitation to the Rydberg state and decay to the ground 
state mimic the basic infection mechanisms 

• Interaction dependence of the excitation rate Γ(∆) simulate the 
connections between sink people

facilitated

facilitated

rfac

Γi(Δ>0)

Infection Healing



Preliminary Results of DP  in 1D Rydberg atom system

• Time dependence with different excitation rates 
• Off resonant excitation ∆/2π = +10 MHz 
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M. Marcuzzi et al., New J. Phys. 17 072003 (2015) 



Preliminary Results of DP  in 1D Rydberg atom system

• Time dependence with different excitation rates 
• Off resonant excitation ∆/2π = +10 MHz 

• Power dependence at 1500 µs excitation laser pulse >> decay time 
(around 150 µs for the 70S)
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Preliminary Results of DP  in 1D Rydberg atom system

S. Lübeck, R.D. Willmann / Nuclear Physics B 718 [FS] (2005) 341–361 
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Perturbation of the model:  
spontaneous generation of seeds



|6P3/2Γ

|70S

|5S

The Rydberg atom system



✓ many body dynamics can be studied in Rydberg gases: (anti-) correlated 
excitations 
✓ interpretation in terms of kinetic constraints and facilitation in the non 
dissipative regime 
✓ seeded avalanche mechanism  
✓ seeded avalanche in the dissipative regime: absorbing state transition 

Conclusions



•  Use the de-excitation technique to make state selective 
measurement: lifetime of the target Rydberg state, 
coupling to different Rydberg states…

(The ionisation field does not distinguish states with n>40) 

• Broad band controlled dissipation via the de-excitation 
technique

(The dissipative regime comes too late:  
vdW repulsion, Rydberg excitation migration)

Last PhD year plan



thanks for your attention 



The Rydberg atom system



Open many body system

two levels system Γ

|70S

|5S



|6P3/2Γ

|70S

|5S

two levels system

loss channel

Open many body system



De-excitation process

|6P3/2Γ

|70S

|5S

two levels system

loss channelcontrolled loss channel



De-excitation process
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due to the interactions the 
de-excitation process reflects 
the energy distribution



De-excitation process
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due to the interactions the 
de-excitation process reflects 
the energy distribution



V(|ri - rj|) Δ>0
Δ=0

rfac0 rb |ri - rj|

Γi(Δ)Off resonant excitation cluster converts 
99% of the potential energy in kinetic 

energy in few microseconds 

Mechanical effects in Rydberg gases



V(|ri - rj|) Δ>0
Δ=0

rfac0 rb |ri - rj|

Γi(Δ)Off resonant excitation cluster converts 
99% of the potential energy in kinetic 

energy in few microseconds 

large forces (a ~ 104 g!) due to off-resonant excitation at 
50-80 MHz leads to “van der Waals explosion” -> 
breakdown of frozen gas approximation (v ~ 1 μm / μs)

Mechanical effects in Rydberg gases



Ion time-of-flight (TOF) distribution reflects the 
spatial distribution of the Rydberg atoms  

Calibration Time-Space

Mechanical effects in Rydberg gases

R. Faoro et al., Phys. Rev. A 93, 030701(R) (2016) 



|6P3/2
Γ

Measuring the lifetime with de-excitation technique

simple idea: de-excitation is 
state selective 

Ntot Nothers
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|6P3/2
Γ

Measuring the lifetime with de-excitation technique

simple idea: de-excitation is 
state selective 

Ntot NothersN70S = -

Ntot Nothers
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Measuring the lifetime with de-excitation technique

simple idea: de-excitation is 
state selective 

Ntot NothersN70S = -

Ntot Nothers

Blackbody coupling?


