

Dissipative and non-dissipative many-body dynamics in a cold Rydberg gas

Cristiano Simonelli

INO-CNR and Dipartimento di Fisica, Pisa, Italy 28/09/2016

- C. Simonelli, M. Archimi, L. Asteria, D. Capecchi, G. Masella, F. Castellucci, E. Arimondo, D. Ciampini, O. Morsch
- I. Lesanovsky, J. Garrahan; P. Pillet, R. Faoro
- Funding: FET-RYSQ, ITN-COHERENCE, PRIN

Overview

- Non equilibrium dynamics of a many body system
- Non dissipative regime: Observation of the kinetic constraint and the facilitation
- Seeded avalanche process
- Dissipative regime: preliminary results of percolation process
- Conclusions and outlook

Many body systems

Many body systems

Many body problem

Non-equilibrium dynamics of a many-body system

ground state: trivial

 excited state (spin up) ground state (spin down)
spin flip with rate Γ

interaction (only in excited state)

Non-equilibrium dynamics of a many-body system

steady state: trivial (fully mixed)

Non-equilibrium dynamics of a many-body system

Cold cloud of ground state atoms

 size of cloud 20-300 µm with up to 3,000,000 atoms; possibility of focusing one beam tightly to realize quasi 1D geometry

Cold cloud of ground state atoms

Laser beams

Front plates A +3.5kV

geometry

Cold cloud of ground state atoms

Lifetime: ~ n³ n=70 ~ 150 μs

Polarizability ~ n^7 van der Waals C₆ coefficient ~ n^{11}

Interaction

$$V_{i,k} = \frac{C_6}{|r_i - r_k|^6}$$

→ strong van-der-Waals or dipole-dipole interaction; orders of magnitude larger than contact interaction in ultra-cold gases (up to GHz at micrometer distances)!

M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. **82**, 2313

Kinetic constraints in Rydberg gases

In the presence of Rydberg-Rydberg interactions, Γ now depends on the interparticle distance and on the detuning Δ

Semiclassical approximation (incoherent excitation):

Rabi oscillations with Ω -> Spin flips with rate

$$\Gamma_{i}(\Delta) = \frac{\Omega^{2}}{2\gamma} \left[1 + \left(\frac{\Delta - \frac{1}{\hbar} \sum_{i \neq j} V_{ij} n_{j}}{\gamma} \right)^{2} \right]^{-1}$$

if $\gamma >> \Omega$

Blockade constraint:anti-correlated dynamics

 growth rate per atom only depends on mean distance d between excited atoms

Facilitation constraint: correlated dynamics

In the presence of Rydberg-Rydberg interactions, Γ now depends on the interparticle distance and on the detuning Δ

Semiclassical approximation (incoherent excitation): Rabi oscillations with Ω -> Spin flips with rate

$$\Gamma_{i}(\Delta) = \frac{\Omega^{2}}{2\gamma} \left[1 + \left(\frac{\Delta - \frac{1}{\hbar} \sum_{i \neq j} V_{ij} n_{j}}{\gamma} \right)^{2} \right]^{-1}$$

if $\gamma >> \Omega$

Kinetic constraints in Rydberg gases

Facilitation constraint: correlated dynamics

Facilitation constraint: correlated dynamics

and saturation reflect the nature of the constraint

Seeded avalanche process

Probability to have at least one excitation

$$P(N > 0) = 1 - e^{-\langle N_{seed} \rangle}$$

Seeded avalanche process

C. Simonelli et al., J. Phys. B: At. Mol. Opt. Phys. 49 154002 (2016)

Probability to have at least one excitation

$$P(N > 0) = 1 - e^{-\langle N_{seed} \rangle}$$

Towards the dissipative regime

Non Dissipative Regime

Towards the dissipative regime

Non Dissipative Regime

Dissipative Regime

Percolation Process

The percolation is one of the simplest process showing a phase transition.

• Isotropic Percolation (any preferred direction)

• Directed Percolation (DP) (one preferred direction in space or in time)

Infection spreading process (DP)

Facilitation in dissipative Regime

• Off resonant excitation to the Rydberg state and decay to the ground state mimic the basic infection mechanisms

• Interaction dependence of the excitation rate $\Gamma(\Delta)$ simulate the connections between sink people

Preliminary Results of DP in 1D Rydberg atom system

- Time dependence with different excitation rates
- Off resonant excitation $\Delta/2\pi = +10$ MHz

Preliminary Results of DP in 1D Rydberg atom system

- Time dependence with different excitation rates
- Off resonant excitation $\Delta/2\pi = +10$ MHz

 Power dependence at 1500 µs excitation laser pulse >> decay time (around 150 µs for the 70S)

M. Marcuzzi et al., New J. Phys. 17 072003 (2015)

Preliminary Results of DP in 1D Rydberg atom system

S. Lübeck, R.D. Willmann / Nuclear Physics B 718 [FS] (2005) 341–361

The Rydberg atom system

Conclusions

✓ many body dynamics can be studied in Rydberg gases: (anti-) correlated excitations

✓ interpretation in terms of kinetic constraints and facilitation in the non dissipative regime

✓ seeded **avalanche** mechanism

✓ **seeded avalanche** in the dissipative regime: absorbing state transition

Last PhD year plan

Use the de-excitation technique to make state selective measurement: lifetime of the target Rydberg state, coupling to different Rydberg states...

(The ionisation field does not distinguish states with n>40)

Broad band controlled dissipation via the de-excitation technique

(The dissipative regime comes too late: vdW repulsion, Rydberg excitation migration)

thanks for your attention

INO ISTITUTO NAZIONALE DI OTTICA

The Rydberg atom system

Open many body system

Open many body system

loss channel

De-excitation process

De-excitation process

De-excitation process

Mechanical effects in Rydberg gases

Off resonant excitation cluster converts 99% of the potential energy in kinetic energy in few microseconds

Mechanical effects in Rydberg gases

Mechanical effects in Rydberg gases

Ion time-of-flight (TOF) distribution reflects the spatial distribution of the Rydberg atoms

R. Faoro et al., Phys. Rev. A 93, 030701(R) (2016)

Measuring the lifetime with de-excitation technique

simple idea: de-excitation is state selective

Measuring the lifetime with de-excitation technique

Measuring the lifetime with de-excitation technique

