

Visible solid-state lasers in rare earth doped fluoride crystals

Alberto Sottile Relatore - Prof. M. Tonelli Controrelatore - Prof. D. Ciampini

Countless applications in science and society

Alberto Sottile

Visible solid-state lasers in rare earth doped fluoride crystals

Countless applications in science and society

Visible solid-state lasers in rare earth doped fluoride crystals

Only a narrow subset of wavelength is easily available

Often produced with complex and expensive sources

Solid-state visible lasers

Based on transparent solids doped with active elements

4-level laser scheme

Efficiency, threshold, and influence of passive losses

Praseodymium trivalent ion

Suitable for laser emission along the whole visible region

- Absorbs in the blue region from compact laser diodes
- Multiple emission lines with3- and 4-level schemes
- Wavelengths and intensities sensitive to host material
- Non-radiative decays can deplete population inversion

Praseodymium trivalent ion

Suitable for laser emission along the whole visible region

Fluoride crystals

Preferred choice for visible solid-state lasers

- ✓ Non-hygroscopic and stable
- ✓ Wide transparency windows
- ✓ Reduce non-radiative decays
- ✓ Suitable for Pr-doping
- X More complex to grow
- **X** More expensive

Czochralski method

Custom-made furnace designed to achieve high quality

Czochralski method

Custom-made furnace designed to achieve high quality

Multiple polarization orange and red lasers in Pr-doped Barium Yttrium Fluoride (BYF)

Alberto Sottile

Visible solid-state lasers in rare earth doped fluoride crystals

Barium Yttrium Fluoride (BYF) structure and properties

TATIS 1343

- Monoclinic structure
- Three different optic axes
- Multiple emission spectra

Suitable for GaN diode pumping and visible emissions

Diode-pumped hemispherical resonant cavity

Laser results for all the transitions in the region

	Abs. power	1	Λ	Lout	v v max
<i>x-y</i> orientation	79%	5%	607 nm	<i>y</i> -axis	64 mW
$E_{in} \parallel y$		0.5%	643 nm	y-axis	17 mW
<i>x-z</i> orientation	50%	5%	607 nm	z-axis	30 mW
$E_{in} \parallel x$		0.5%	639 nm	z-axis	20 mW
<i>y-z</i> orientation $E_{in} \parallel y$	86%	5%	607 nm	y-axis	99 mW
				z-axis	80 mW
		0.5%	639 nm	z-axis	60 mW
			643 nm	y-axis	45 mW

- Test of all available input and output polarizations
- 643 nm laser emission observed for the first time

Simultaneous laser emissions of two lines

Deep red laser emission in Pr-doped Potassium Yttrium Fluoride (KYF)

Visible solid-state lasers in rare earth doped fluoride crystals

KYF is the only fluoride laser crystal with cubic symmetry

Spectroscopic characterization data

Emission spectrum

- Absorption in blue region
- Multiple deep red emissions
- 720 nm is employed in spectroscopy, cooling and entrapment of atomic gases
- Lack of diodes in this area

First laser experiments in this wavelength region with KYF

Results comparable for the first time with standard fluorides

Waveguide inscription and laser in Pr-doped Potassium Yttrium Fluoride (KYF)

Alberto Sottile

Visible solid-state lasers in rare earth doped fluoride crystals

Benefits of guided channels with respect to bulk crystals

- Confined interaction between pump and output laser beam
- Higher slope efficiencies, lower threshold powers, suitable for weaker laser transitions
- Reduced sizes and influence of thermal and external effects

Direct inscription with fs-laser tightly focused pulses

- IR laser pulse releases energy via multiphoton absorption
- Stress-induced birefringence caused by pressure of tracks
- Undamaged guided channel

Double track

Results of waveguide fabrication

Microscope image

Uniaxial birefringence in the channel

First waveguide laser in Pr:KYF

- Laser along both polarizations
- Multimode pump beam caused low absorbed fractions
- Higher performances than in other Pr-doped materials

T. Calmano, A. Sottile et al., in ASSL 2015, AW1A.5

Future activities

Alberto Sottile

Visible solid-state lasers in rare earth doped fluoride crystals

Future activities

Pr-doped µ-PD grown crystal fiber for compact visible lasers

- Only way to shrink size of fluorides without damages
- Tested in the IR region
- No visible laser emissions reported for fiber crystals

Summary

- Research on innovative visible lasers in Pr³⁺-doped fluoride single crystals
- Multiple polarization laser study in Pr:BYF at 607 nm, 639 nm, and 643 nm
- First deep red laser characterization in Pr:KYF with improved optical quality

 First waveguide laser in Pr:KYF with uniaxial channels and higher performances

Thank you for your attention

Prof. Mauro Tonelli Prof. Alberto Di Lieto Stefano Veronesi Daniela Parisi Elena Favilla

Azzurra Volpi Zhonghan Zhang Giovanni Cittadino Giacomo Bolognesi

Ilaria Grassini Alessandro Masetti Fabio Torri