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Structure does not change 
 undergoing the glass transition
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Coarse-grained polymeric model offer a 
good framework for numerical simulation
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Monomer dynamics is 
characterized by MSD and ISF

Readapted from:
 S. Bernini, F. Puosi, and D. Leporini, J. Phys. Condens.Matter 29, 135101 (2017).
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Monomer dynamics is 
characterized by MSD and ISF
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Fast mobility (<u2>) and relaxation (𝝉𝛂)  
are correlated 

log τα = α + β ( 1
⟨u2⟩ ) + γ ( 1

⟨u2⟩ )
2
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Mutual information gives the general degree 
of dependence between two random variables

Shannon Entropy

H(X ) = − ∫ dx p(x)log p(x)

it quantify the randomness of a random variable

X and Y, random variables with 
joint probability distribution �p(x, y)

H(X, Y )

if X and Y are independent 
 �p(x, y) = p(x)p(y)

H(X, Y ) = H(X ) + H(y)

if not

I(X, Y ) = H(X ) + H(Y ) − H(X, Y )

Mutual Information
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Are X and Y dependent on each other?

Pearson correlation coefficient

C(X, Y ) =
⟨(x − ⟨x⟩)(y − ⟨y⟩)⟩

σXσY
= ?
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Are X and Y dependent on each other?

Pearson correlation coefficient

X and Y are independent !?

C(X, Y ) =
⟨(x − ⟨x⟩)(y − ⟨y⟩)⟩

σXσY
= 0

I(X, Y) ≠ 0
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We built three set of iso-relaxing states
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We investigate displacement correlation between 
pairs of particle through mutual information
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• Take an equilibrated configuration 
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• Re-assign velocities according to a 
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Particles above threshold are said to be 
significantly correlated
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At each time we can compute the distribution of 
the number of particle correlated to a tagged one
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The distribution can be characterized by its 
mean value and standard deviation
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Mutual information correlation length increases 
weakly approaching the glass transition
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High �  implies high mobility 
High �  implies low mobility
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�  and �  mark two modes of relaxationτearly τlate
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Scaling has already proven to hold   
for subset of particles of a bulk system  

M. Becchi, A. Giuntoli, and D. Leporini, SoftMatter 14, 8814 (2018)
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Local structure correlates with the two populations

• Local density
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Local structure correlates with the two populations

• Topological characterization of local structure
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Conclusion and future work

• Investigated displacement-displacement correlation 
of pair of particle through mutual information

• Average number of correlated particle �  MI length scale→
A. Tripodo, A. Giuntoli, M. Malvaldi, and D. Leporini, SoftMatter , (2019)

• Standard deviation �  Two modes of relaxation and scaling→

Soon-to-be-published

• Correlation of the modulus of the displacement

• Connection of �  with �τlate τee

In the immediate future


