

UNIVERSITY OF PISA Ph.D. graduate school in Physics

Mutual Information in molecular liquids

Supervisor Prof. Dino Leporini **Phd student** Antonio Tripodo

Outline of the presentation

• Context

- Glass transition
- Investigated system and method

Displacement-Displacement correlation

- Average number of MI-correlated particles
- Standard deviation
- Correlation with structure
- Conclusion and future work

Outline of the presentation

• Context

- Glass transition
- Investigated system and method
- Displacement-Displacement correlation
 - Average number of MI-correlated particles
 - Standard deviation
 - Correlation with structure
- Conclusion and future work

Liquids cooled fast enough avoid crystallization and fall out of equilibrium

Liquids cooled fast enough avoid crystallization and fall out of equilibrium

Liquids cooled fast enough avoid crystallization and fall out of equilibrium

Structure does not change undergoing the glass transition

Coarse-grained polymeric model offer a good framework for numerical simulation

Bond interaction

 $U_{bond}(l) = k(l - l_0)^2$

$$\begin{array}{c}
 0.16 \\
 0.14 \\
 0.12 \\
 0.00 \\
 0.08 \\
 0.06 \\
 0.04 \\
 0.02 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\
 0.00 \\$$

Lennard-Jones Interaction

$$U_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \xrightarrow{0.75}_{0.50}_{0.00}_{-0.25}_{-0.25}_{-0.50}_{-0.75}_{-$$

Readapted from: S. Bernini, F. Puosi, and D. Leporini, J. Phys. Condens.Matter 29, 135101 (2017).

Readapted from: S. Bernini, F. Puosi, and D. Leporini, J. Phys. Condens.Matter 29, 135101 (2017).

Readapted from: S. Bernini, F. Puosi, and D. Leporini, J. Phys. Condens.Matter 29, 135101 (2017).

Readapted from: S. Bernini, F. Puosi, and D. Leporini, J. Phys. Condens.Matter 29, 135101 (2017).

Readapted from: S. Bernini, F. Puosi, and D. Leporini, J. Phys. Condens.Matter 29, 135101 (2017).

Fast mobility (<u²>) and relaxation (τ_{α}) are correlated

Molecular dynamics simulations

Experiments

$$\log \tau_{\alpha} = \alpha + \beta \left(\frac{1}{\langle u^2 \rangle}\right) + \gamma \left(\frac{1}{\langle u^2 \rangle}\right)^2$$

$$\log \tau_{\alpha} = \alpha + \beta \left(\frac{\langle u_g^2 \rangle}{\langle u^2 \rangle} \right) + \gamma \left(\frac{\langle u_g^2 \rangle}{\langle u^2 \rangle} \right)^2$$

Mutual information gives the general degree of dependence between two random variables

Shannon Entropy

$$H(X) = -\int dx \ p(x) \log p(x)$$

it quantify the randomness of a random variable

X and Y, random variables with joint probability distribution p(x, y)H(X, Y)if X and Y are independent p(x, y) = p(x)p(y)H(X, Y) = H(X) + H(y)if not I(X, Y) = H(X) + H(Y) - H(X, Y)

Mutual Information

Mutual information gives the general degree of dependence between two random variables

Shannon Entropy

$$H(X) = -\int dx \ p(x) \log p(x)$$

it quantify the randomness of a random variable

X and Y, random variables with joint probability distribution p(x, y)H(X, Y)if X and Y are independent p(x, y) = p(x)p(y)H(X, Y) = H(X) + H(y)if not $I(X,Y) = \left[\int dx dy \ p(x,y) \log \left| \frac{p(x,y)}{p(x)p(y)} \right| \right]$

Mutual Information

Pearson correlation coefficient

$$C(X, Y) = \frac{\langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle}{\sigma_X \sigma_Y} = ?$$

Pearson correlation coefficient

$$C(X,Y) = \frac{\langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle}{\sigma_X \sigma_Y} = 0$$

X and Y are independent !?

Pearson correlation coefficient

$$C(X,Y) = \frac{\langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle}{\sigma_X \sigma_Y} = 0$$

X and Y are independent !?

 $I(X, Y) \neq 0$

Outline of the presentation

• Context

- Glass transition
- Investigated system and method

Displacement-Displacement correlation

- Average number of MI-correlated particles
- Standard deviation
- Correlation with structure

• Conclusion and future work

We built three set of iso-relaxing states

We investigate displacement correlation between pairs of particle through mutual information

Iso-configurational ensemble

- Take an equilibrated configuration
- Erase all the velocities
- Re-assign velocities according to a M-B at the same temperature

Displacement distribution in the iso-configurational ensemble

 $I_{ij}(t) = I(\delta \vec{r}_i(t), \delta \vec{r}_j(t))$

Particles above threshold are said to be significantly correlated

At each time we can compute the distribution of the number of particle correlated to a tagged one

The maximum value of $\overline{n}(t)$ do not increase with τ_{α}

Peak of correlation

Loss of correlation

The maximum value of $\overline{n}(t)$ do not increase with τ_{α}

Loss of correlation

The maximum value of $\overline{n}(t)$ do not increase with τ_{α}

Build up correlation

Loss of correlation

Mutual information correlation length increases weakly approaching the glass transition

Conventional displacement correlation functions

$$C_{\bar{u}}(r,t) = \left\langle \hat{\mathbf{u}}_{i}(t_{0},t) \cdot \hat{\mathbf{u}}_{j}(t_{0},t) \right\rangle \longrightarrow \xi_{\bar{u}}$$

$$C_{\delta u}(r,t) = \frac{\left\langle \delta u_{i}(t_{0},t) \delta u_{j}(t_{0},t) \right\rangle}{\left\langle [\delta u(t_{0},t)]^{2} \right\rangle} \longrightarrow \xi_{\delta u}$$

Standard deviation reveals two length scales

we need to characterize monomers on the basis of $n_i(t)$

High $n_i(\tau_{early})$ implies high mobility High $n_i(\tau_{late})$ implies low mobility

τ_{early} and τ_{late} mark two modes of relaxation

Build up correlation

Peak of correlation

Loss of correlation

Isolate these two modes

 $\frac{Threshold}{\langle n_i \rangle + 2\sigma_{n_i}}$

au_{early} and au_{late} are the structural relaxation times of the two fractions

Scaling has already proven to hold for subset of particles of a bulk system

M. Becchi, A. Giuntoli, and D. Leporini, SoftMatter 14, 8814 (2018)

Scaling holds for the early and late-relaxing fractions

Local structure correlates with the two populations

• Local density

$$c(n_i(t), \delta r_i^2(t)) = \frac{\langle (n_i(t) - \langle n_i(t) \rangle)(\rho_i(t) - \langle \rho_i(t) \rangle) \rangle}{\sigma_{n_i} \sigma_{\rho_i}}$$

Average over populations for all the states

Local structure correlates with the two populations

• Topological characterization of local structure

Outline of the presentation

• Context

- Glass transition
- Investigated system and method
- Displacement-Displacement correlation
 - Average number of MI-correlated particles
 - Standard deviation
 - Correlation with structure
- Conclusion and future work

Conclusion and future work

- Investigated displacement-displacement correlation of pair of particle through mutual information
- Average number of correlated particle \rightarrow MI length scale

A. Tripodo, A. Giuntoli, M. Malvaldi, and D. Leporini, SoftMatter, (2019)

• Standard deviation \rightarrow Two modes of relaxation and scaling

Soon-to-be-published

In the immediate future

- Correlation of the modulus of the displacement
- Connection of τ_{late} with τ_{ee}