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Abstract—Questions concerning the formation of the optical properties of dense gaseous and plasma media in
relation to the specific features of radiant energy transfer are considered. The integral equations describing the
radiation trapping are investigated as a new class of generalized wave equations of Schrödinger type. Starting
from the methods of quantum mechanics, original analytical and numerical approaches are suggested for solv-
ing problems of the radiative kinetics of both spatially homogeneous and inhomogeneous absorbing media con-
taining dispersed particles. In terms of the quasi-classical approximation, two classes of reference problems for
determination of phase factors are formulated. Solutions for a number of model problems are presented that
demonstrate the efficiency of the methods developed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known [1, 2], the trapping of resonance
radiation radically affects the formation of lumines-
cence of optically dense gaseous and plasma media. In
this context, a great number of studies are devoted to
different aspects of radiant energy transfer both in
planet atmospheres [3] and under the conditions of
modern spectroscopic experiments [4, 5]. Studies of the
last decade [6, 7] revealed also the importance of pro-
cesses of multiple reemission of photons in magneto-
optical traps, where radiation trapping in the range of
operating frequencies of cooling lasers prevents obtain-
ing high concentrations and low temperatures of the
atoms cooled [8].

The presence of dispersed particles of a substance in
either solid or liquid state in a plasma may lead to sig-
nificant changes in the electrokinetic properties of the
plasma medium. In the general case, the dynamics of
such a multiphase system should also consider the pro-
cesses of radiant energy exchange between the (carrier)
medium and the macroparticles and microparticles of
the substance. The interest in investigations of low-tem-
perature plasmas containing a condensed dispersed
phase (CDP) is caused by the use of such media in pro-
pulsion and energy systems operating on solid and liq-
uid fuels and in modern high technologies.

Among the numerous known methods of diagnos-
tics of CDP-containing plasmas, spectroscopic meth-
ods are the simplest and most universal. On the basis of
experimental data on the intensities and shapes of spec-
tral lines and the optical thickness of the absorbing
layer in the medium studied, these methods yield reli-
able information about the parameters of the object
0030-400X/03/9504- $24.00 © 20631
under investigation. In most cases of practical impor-
tance, the gas studied is nontransparent for radiation
emerging from it. Such media, in which the intrinsic
absorption (self-absorption) of spectral lines plays an
important role, are called optically dense. The influence
of CDP particles on the optical properties of a plasma,
including their effect on the characteristics of radiation
transfer under conditions when a flow of ionized gas
with evaporating drops of an alkali metal exists, was
considered in [9]. The results obtained made it possible
to develop a technique of optical diagnostics of a
plasma with a CDP in the form of local formations hav-
ing the structure of a metal nucleus surrounded by a
vapor shell. Such a simulation of a plasma with a CDP
is also of interest from the practical point of view, since
the phenomenon of nonequilibrium ionization was
observed previously under the same conditions. The
model of radiation transfer in a strongly inhomoge-
neous plasma with a CDP in the form of an evaporating
liquid-metal drop, suggested in [9], was confirmed
experimentally for a number of informative parameters.

We should note that media in which mass transfer
phenomena play an important role are convenient
objects for observation of new spectroscopic effects.
The specific features of the shapes of spectral lines in
the system of a drop evaporating in a vacuum may serve
as an example. In the latter case, the drop, for example,
of an alkali metal, is the source of an expanding vapor
shell composed of alkali atoms. The concentration of
atoms is highest at the drop surface and rapidly
decreases with increasing distance from the surface.
The characteristics of absorption and emission of light
within the shell are governed by both the spatial and
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velocity distributions of atoms. In this case, the emis-
sion line may become narrower in comparison with the
absorption line if, within the lifetime of the excited
state, an atom that absorbed a photon near the surface
of the liquid-metal nucleus passes to a region where the
concentration of normal atoms is significantly lower
than its maximum value near the surface. As a result,
the case of an “optical condenser” may be realized in
the frequency space (the system absorbs light in a wide
spectral range and reemits light in a narrow range of
frequencies [10]).

Thus, problems of fundamental and applied physics
for the typical conditions of optically dense media exist
whose solution requires rigorously accounting for the
processes of radiation trapping (transfer). We present
below the results of our studies based on the application
of new approaches to solving problems of the radiation
kinetics of gaseous media with both uniform and non-
uniform spatial distributions of the absorption and
emission coefficients of resonance radiation. It should
be noted that accounting for the spatial inhomogeneity
of spectral characteristics in calculations of the distri-
bution of excited atoms is the most complex problem
and, as will be shown below, should be taken into
account in terms of the reference problem method.

INTEGRAL EQUATION 
FOR RADIATION TRAPPING

The simplest equation simulating radiation trapping
in the approximation of a two-level scheme of an atom
is the Biberman–Holstein equation [2, 11]

(1)

(2)

Here, A21 and W are, respectively, the probabilities of
the radiative decay and quenching of the population
n*(r, t) of the resonance level at the spatial point r per
unit time and α* (the so-called function of primary
sources) sets the excitation rate of atoms enclosed in a
cell of volume Ω. The nucleus G of the integral term is
governed by the probability of absorption of a photon
in the vicinity of the point of observation r under the
condition of photon emission in the vicinity of the point

; G contains the profiles of the spectral coefficients of
absorption k(ν, r) and emission ϕ(ν, ) of photons, nor-

malized by the condition (ν, r)dν = 1. The exponen-

tial factor yields the reduction in intensity of light of
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On the assumption of complete frequency redistribu-
tion [3], the profiles κ(ν, r) and ϕ(ν, r) are proportional
to each other:

(4)

The functional representations of the spectral line
shapes of the most significant types have the forms
[3, 4]

(5)

for the Doppler, Lorentz, and mixed (Voigt) mecha-
nisms of line broadening, respectively. Here, γL and

γD = c–1ν0  are the Lorentz and Doppler line
widths, respectively; c is the speed of light; k is the

Boltzmann constant; m is the molecular mass; and 

and  are the absorption coefficients at the line cen-
ter ν0 for the Doppler and Lorentz lines, respectively. In
the case of a mixed shape, the absorption coefficient

coincides with that for the Doppler line: κ0 = .

It should be noted that solving integrodifferential
equations of type (1) involved serious difficulties even
in the case of a two-level model of an atom and homo-
geneous media in cells of simplest form. Physically,
these difficulties are caused by the possibility of light
energy exchange between distant atoms due to the pho-
ton deexcitation in the line wings, which are transparent
for gaseous media. The formal consequence of the
existence of the long-range part of the spectrum is the
divergence of the photon mean free path, which makes
invalid the approximation of the integral trapping equa-
tions by local diffusion equations of Fokker–Planck
type. For this reason, many conventional numerical
schemes become inadequate as applied to the general
class of integrodifferential transport equations [12].
More or less universal approaches [4, 13], based on the
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numerical simulation of processes in terms of the
Monte Carlo method, require efficient computers and
much computing time. At the same time, the algorithms
with acceptable computational speed, developed for
astrophysical applications, are rather specific [3, 14]
and applicable only to solving a narrow range of prob-
lems (one-dimensional geometries of the plane-atmo-
sphere type). The exceptions to this rule are situations
when the radiation trapping occurs with conservation of
the frequency of reemitted photons [15] or when the
processes of transfer and scattering of light energy
occur in turbid media with conservation of the photon
mean free path within the line [1, 16]. In this case, the
kinetic equations of the Biberman–Holstein type are
reduced to one or another modification of the diffusion
equations (the Milne equations [1]), which accounts for
the fact that the corresponding theories are highly
advanced.

METHOD OF GENERALIZED WAVE EQUATIONS 
FOR PROBLEMS OF THE RADIATION KINETICS 

OF GASEOUS MEDIA

In view of the above considerations, it is of interest
from both the practical and the scientific points of view
to develop radically new approaches (numerical and
analytical), which would, on the one hand, lead to sim-
ple calculations and, on the other hand, be sufficiently
universal. In this study, we describe such a method [17–
20], which will be referred to as the generalized-wave-
equation approach (GWEA). In terms of the GWEA,
the integral equations are considered as a new class of
wave equations for some classical three-dimensional
Hamiltonian system (quasiparticles). Such an interpre-
tation makes it possible, primarily, to develop a modi-
fied quasi-classical approximation (a method of geo-
metrical quantization) and obtain an analytical descrip-
tion of the trapping effects in regions with separable
variables (a plane layer; a sphere; a finite cylinder; and
various parallelepipeds, prisms, and ellipses). Recently,
a new numerical method for solving trapping equations
based on fast algorithms (the split propagation tech-
nique) was suggested [21, 22], aimed at accurate inves-
tigation of nonstationary problems of radiation transfer
in convex regions.

The concept of the GWEA can be followed most
easily through the example of solving a spectral prob-
lem for the Biberman–Holstein equation (1), which
appears in the case of expansion of the level population
in a Fourier series [4, 11]:

(6)

Here, the quantities ψj are set by the normalized eigen-
functions (modes) of the trapping equation; 1/gj = λj are
the corresponding eigenvalues; and the expansion coef-
ficients αj are governed by the initial spatial distribution
of the excited states. The parameters gj are referred to
as the trapping factors; their values are related to the

n* r t,( ) Σ jα jψ j r( ) A21t/g j–( ).exp=
OPTICS AND SPECTROSCOPY      Vol. 95      No. 4      2003
average number of reemission events in the jth mode.
The radiation modes, i.e., the complete set of the func-
tions ψj, are found by solving the eigenvalue problem (the
so-called spectral problem) for trapping equation (1) [4,
11]:

(7)

where the symbols  and  correspond to the integral
trapping operator and the unit operator, respectively.
The subscript j enumerates the modes. The function
ψj(r) sets the spatial profile of the jth mode, whereas
the quantity λj controls the effective constant of its radi-
ative decay. The radiation -kinetics problem can be con-
sidered solved if one or another algorithm for calcula-
tion of the complete set (spectrum) of effective radia-
tion constants λj and corresponding modes ψj(r) in the
volume Ω is found.

In [17, 18], an analogy between the general form of
Eqs. (1) and (7) and some class of differential equations
was noted. Thus, it is suggested that trapping equation
(7) be considered as a variant of a steady-state wave
equation for a three-dimensional classical system (a
quasiparticle), which is set by a Hamiltonian associated
with (1) and (7),

(8)

(9)

Note that, in the absence of quenching, this fact is
obvious for the case of an infinite homogeneous space

, since the nucleus G in (2) depends on the differ-

ence ρ = |r – | of its arguments. In this case, integral
operator (1) is of convolution type and its eigenfunc-
tions are the plane waves exp(irp). The corresponding

eigenvalues A21λp = A21 (p) are the amplitudes of the
Fourier transform of the nucleus G, which have the
same form as expression (9) [3]. This circumstance
allows one to consider the wave vector p as the momen-
tum and the eigenvalue A21λp as the kinetic energy in
the system of units with Planck’s constant " = 1. In
another formulation, this fact means that the action of

the operator (  – ) in the momentum space reduces

to multiplication of the functions by the factor (p).
Taking into account that, in the coordinate space, the
action of the momentum operator reduces to differenti-
ation, p = –i∂/∂r, spectral problem (7) can be rewritten
in the equivalent form

(10)

with the Hamiltonian H (8). The similarity of this equa-
tion with the Schrödinger equation is obvious. When
one goes to generalized wave equation (10), two new
aspects of the problem arise. First, it is possible to con-
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sider the quenching probability W(r) as the potential
energy in the Hamiltonian equations of motion

(11)

for a quasiparticle. The rigorous justification of the lat-
ter statement was performed in [23] on the basis of the
method of continuum Feynman integrals, where, in par-
ticular, it was shown that the canonical scheme of quan-
tization of Hamiltonian (8) in an unlimited homoge-

neous space  leads to the identical spectral prob-
lem (7) for trapping equation (1). The second important
circumstance arises in the case of media characterized
by substantial spatial inhomogeneity and is related to
the problem of ordering the operators  = –i∂/∂r and 
(which do not commute with each other) in Eq. (10)

(more exactly, in the function (r, p) (9)). The correct
ordering of operators can be carried out on the basis of
two requirements: (i) spectral problem (10) should cor-
respond to a self-adjoint operator [24] and (ii) Eq. (10)
should be consistent with the homogeneous trapping
equation in terms of the so-called variable reduced opti-

d
dt
-----r
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d
dt
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Ṽ

(b)

1

1'

3'
3'2'

1'

2
3

2'

1

2

3

(‡)

Fig. 1. Path of motion of a quasiparticle in a gaseous
medium with CDP particles: (a) elastic reflection of the qua-
siparticle from a planar potential surface, corresponding to
a cell wall, and (b) actual paths of a quasiparticle in the
vicinity of CDP particles and the corresponding billiard
paths.
cal thicknesses [25–27]. However, we should note that,
in terms of quasi-classical methods of solving problems
of type (10), Hamiltonian (8) and paths (11) are deter-
mined unambiguously [24].

RADIATION KINETICS AS A VARIANT 
OF THE QUANTUM BILLIARD PROBLEM

In [17], an approach is described that allows one to
extend the concept of a quasiparticle to the case of finite
gas-filled volumes. In order to do this, it is sufficient to
assume the quenching probability W to be equal to
infinity beyond the volume Ω and to extend the limits

of integration in (1) to the entire space , since
n*(r) = 0 in the regions where W(r) = ∞. Now let us
return to the interpretation of W as the potential energy.
An infinite drop of the potential W at the boundary ∂Ω
of the cell volume Ω means the confinement of a quasi-
particle in the potential box Ω. At the same time, the
appearance of an impermeable potential wall ∂Ω leads
to elastic reflection of the paths (11) from the cell
boundary (Fig. 1a). Thus, an important and rather unex-
pected consequence of the wave–particle dualism (with
the wave and particle described by Eqs. (7) and (11),
respectively) is the complementarity principle with
respect to the transparency of the cell walls: the fact of
free escape of photons from the gas volume Ω (the
absence of light reflection from the walls) means the
appearance of an infinite, impermeable for the particle
(11), potential barrier at the boundary ∂Ω of the absorb-
ing medium.

In the case of a low-temperature plasma with a CDP,
in the vicinity of CDP particles, abrupt changes both in
the concentration and in the temperature of absorbing
atoms may be observed (the typical situation for the
alkali aerosol plasma mentioned in the Introduction).
With regard to the quasiparticle, this circumstance
should lead to strong refraction effects for its path char-
acteristics (11), which is shown schematically in Fig.
1b as scattering (reflection) of a quasiparticle from the
surface of a CDP particle. The path of motion for the
Hamiltonian H(r, p) (8) consists of segments of lines
restricted by the cell walls and the surfaces of CDP par-
ticles. Thus, the problem of determination of the effec-
tive radiation constants of the trapping equation
reduces to determination of the quantum energy levels
A21λj for a point quasiparticle with paths (11), placed in
the three-dimensional “billiard” Ω with an elastically
reflecting surface ∂Ω and scattering centers in the form
of randomly distributed spheres (CDP particles)
(Fig. 1b).

Obviously, the kinetic energy  plays an important
role in this case. The specific features of the behavior of
this quantity (as a function of the momentum p) set the
dispersion characteristics of a quasiparticle and, in
many respects, govern the specificity of the GWEA for
radiation transfer problems. Different analytical repre-

Ω3
∞( )

Ṽ

OPTICS AND SPECTROSCOPY      Vol. 95      No. 4      2003



ON ACCOUNTING FOR THE EFFECT OF PARTICLES 635
sentations for  [18] show, in particular, that the qua-
siparticle behavior is characterized by a complex dis-
persion law. In the Fourier space, small magnitudes of
the momentum p correspond to an extended region
with the characteristic linear size L (|p | ~ 1/L). There-
fore, large optical thicknesses τ correspond to large val-
ues of the parameter κ0/ |p | ~ τ, which enters the argu-

ment of the function  (9). The properties of the trap-
ping factors for optically dense media are governed by
the behavior of the absorption coefficient κ(ν) in the
line wings [3]. The energy exchange between atoms
due to radiation transfer at the frequencies of the spec-
tral lines of atoms belongs to the class of long-range
interactions. The formal consequence of the divergence
of the mean free path of photons is the violation of the

smoothness of the curve of the kinetic energy  at
small momenta p. This statement can be easily illus-
trated for the cases of Lorentz and Doppler shapes of
lines [3, 18]:

As can be seen, the velocity v = ∂/∂p  of a quasiparti-
cle (the so-called group velocity for the wave packets)
tends to infinity in the vicinity of the values of momenta
|p | = 0.

NONCONVENTIONAL METHODS FOR SOLVING 
THE RADIATION TRANSFER EQUATION

Another important consequence of the above con-
sideration is that trapping equation (1) can be written in
the form of the nonstationary equation

(12)

in order to determine the evolution of a generalized
quantum-mechanical system (a quasiparticle). The
above reformulation of the radiation transfer problem
reveals the radically new possibility of constructing
solutions to problems of radiation kinetics with the use
of recently developed methods of computational
physics.

The numerical calculation of the dynamics of
excited states can be performed on the basis of the split
propagation technique (SPT), which has been well
developed recently [28]. The universal algorithm and
its realization in a specific program for solving Eq. (12)
are described in [21]. The advantages of the numerical
scheme [21] are its efficiency in study of arbitrary con-
vex volumes with absorbing media and the possibility
of analyzing spectral problem (10). As an example,

Ṽ
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Fig. 2 shows the results of calculations of the spatial
behavior of the first three modes of the trapping equa-
tion for homogeneous gaseous media of elliptical
shape. It should be noted that the SPT makes it possible
to analyze the radiation transfer problems stated more
generally [22] under the condition of partial frequency
redistribution. The further development of the method,
as applied to systems of cold atoms, when the absorp-
tion-line shape is governed mainly by the natural line-
width and the mechanism of diffusion migration at the
radiation frequencies is realized (which reduces the
redistribution problem to an equation of Fokker–Planck
type [29]), will be published elsewhere.

In the analytical methods for solving Eqs. (10) and
(12), the quasi-classical approach to the problem of
quantization of the quasiparticle energy is used [18,
19). Here, in view of a number of specific features
inherent in radiation kinetics problems, development
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Fig. 2. Spatial profiles of first three modes ψj(x, y) ( j = 0, 1,
2) of the trapping equation for the case of a gas-filled cell in
the form of an elliptical infinitely high cylinder. The ratio of
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and refinement of special techniques is required [30].
For example, it becomes necessary to obtain the solu-
tions for a number of reference equations describing the
radiation trapping, with subsequent correction of the
phase factors on the basis of these solutions. The point
is that the quasi-classical formulas for the wave func-
tions (coinciding with the spectral modes of the trap-
ping equations) are invalid in the vicinity of discontinu-
ity surfaces and points of contact of different compo-
nents of gaseous media. The same also holds true for
description of the mode behavior in the vicinity of the
cell boundary, where a potential barrier is introduced in
terms of the GWEA. On the whole, the two main
classes of model equations of the transfer theory should
be analyzed and the abrupt changes in phases of the
wave packets should be determined after they pass
through (or reflect from) structures with high spatial
inhomogeneity. Thus, the following problems remain to
be solved: (i) determination of the degree of excitation
of a medium in the spectral modes near a plane surface
under the conditions of partial reflection of light from it
(in terms of the quasi-classical approach, such a prob-
lem corresponds to reflection of a quasiparticle from a
planar potential wall (Fig. 1a)); (ii) analysis of the
modes of the trapping equation in the case of a unlim-
ited volume, in which a sphere of finite radius with par-
tially reflecting walls has been placed (a CDP particle).
The solution to the latter problem reduces to analysis of
scattering of a quasiparticle from a spherical surface.

The systematic investigation of the problems arising
here was started in [18, 19, 30] in terms of the quasi-
classical (short-wavelength) approximation, which was
well developed in quantum mechanics and optics. The
Bohr–Sommerfeld quantization rules [31] for systems
with separable variables and their subsequent modifica-

10

10

100

1 100
κo

g0

D

L

Fig. 3. Trapping factors g0 for the fundamental mode in the
case of an oblong ellipsoid of revolution with semiaxes
R⊥  = 1 cm and Rz = 2 cm. The values of g0 obtained by geo-
metric quantization (the solid lines) are shown as functions
of the absorption coefficient k0 [cm–1] at the line center. The
dashed lines show the results of numerical calculations by
the Monte Carlo method. The lines have Doppler and
Lorentz shapes (D and L, respectively).
tion—the Einstein–Brillouin–Keller quantization
method—for the case of weakly nonintegrable systems
[32, 33] yield an efficient algorithm for solving the
spectral problem, i.e., for analytical calculation of all
the effective radiation damping constants A21λj (7) and
the corresponding modes. Figure 3 shows the results of
calculations (solid lines) of the g0 factors (=1/λ0) for
the fundamental mode obtained by geometrical quanti-
zation [19] in the case of extended ellipsoidal cells
filled with a homogeneous absorbing medium. Com-
parison with the numerical calculations by the Monte
Carlo method (dashed curves) indicates the high accu-
racy (better than 5%) of geometrical quantization and,
correspondingly, the promise of analytical approaches
to solving radiation kinetics problems.

CONCLUSIONS

In optically dense gaseous media, the transfer of
light energy within the resonance emission spectrum
plays an important role in the processes of population
of the resonance levels of atoms. In turn, the dynamics
of the behavior of resonance states under the conditions
of a steady-state gas-discharge plasma, of the afterglow
stage, and of a photoplasma affects in many respects the
kinetics of both the neutral and electron components of
the plasma. Therefore, correctly accounting for the
radiation trapping becomes an integral component of
any approach aimed at constructing a closed theory of
radiation kinetics for optically dense plasma media. In
this study, we discussed the nonconventional method of
generalized wave equations for solving integral equa-
tions, which, in our opinion, yields a basis for develop-
ment of fast and efficient algorithms of calculation
(analytical and numerical) of populations of the reso-
nance levels of atoms. We should note the universality
of the generalized transport equations (10) and (12), in
terms of which simulation of the formation of the opti-
cal properties of absorbing media is possible for a wide
range of conditions of modern experiments: from ultra-
cold atoms in magneto-optical traps [5, 20] to plasma
media in MHD generators [9]. The most complex prob-
lem is the investigation of the transfer processes in spa-
tially inhomogeneous media. This problem can be
solved on the basis of the methods and concepts
described here.
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