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Abstract
Dynamic force microscopy (DFM) with the self-oscillator (SO) method is not
generally subjected to the instability effects typical of tapping-mode DFM, as
confirmed experimentally. The inherent stability of SO-DFM is related to
phase locking of the cantilever oscillation to the excitation signal. Such phase
locking determines univocally the oscillation state (i.e. amplitude and
frequency) on the resonance curve, even when multiple amplitude values are
compatible with a given frequency. By modelling the behaviour of an
air-operated DFM system, it is found that, while stabilizing tip/surface
distance for DFM imaging at constant frequency shift, and beyond a certain
critical phase value, instabilities are possible in the SO constant-excitation
amplitude mode. However, such instabilities cannot affect dynamic force
spectroscopy approach curves, because of phase locking. By extension to
vacuum operation, this result can confirm the origin of jumps in frequency
shift found on some experimental DFM approach curves, for instance
between non-passivated silicon tips to specific surface atomic sites of
reconstructed silicon, since instrumental effects of the SO method can be
ruled out.

1. Introduction

Dynamic force microscopy (DFM) in the self-oscillator (SO)
method [1] has a relevant role as an atomic-scale surface imag-
ing and spectroscopic tool. In spite of a rather complicated
experimental implementation compared to the simpler low-
amplitude non-contact [2] and high-amplitude tapping-mode
DFM [3], SO-DFM provides higher measurement bandwidth
for imaging [1] and more straightforward interpretation of ap-
proach curves for dynamic force spectroscopy [4, 5]. Further-
more, instability effects typical of tapping-mode DFM [6] are
not observed experimentally with the SO method, although an-
ticipated by some theoretical studies [7]. In this paper it is
shown that SO-DFM is characterized by inherently high stabil-
ity, which can be evinced by the analysis of the DFM cantilever
motion when properly taking into account the phase-locking
condition that is the essential feature of the SO method.

Understanding possible instability effects in the SO
method is important for clarifying the physical mechanisms
responsible for the observed jumps in the frequency shift
signal during the approach of a DFM tip to specific atomic

sites by using the constant-excitation amplitude (CE) SO
method [8], as observed in experiments [9, 10]. In [10] it
was found that jumps in frequency shift during the approach
of a silicon tip were recorded at specific lattice sites of
a Si(111) 7 × 7 reconstructed surface. The jumps were
present depending on the type of atomic site to which the
tip was approached, and were not present when using a
passivated Si probe. Therefore, DFM approach curves were
demonstrated to provide lattice-site selectivity. A model of
covalent bonding formation between dangling bonds on the
Si tip and the surface has been proposed to explain such
discontinuities [10]. A similar behaviour was reproduced
by ab initio simulations between Si and InAs [11]. In
general, such jumps can be obtained by introducing a hysteretic
potential, which simulates a dissipative bonding formation and
breaking phenomenon [12]. However, the model of covalent
bond formation awaits stronger confirmation, for instance
by checking that dynamic force spectroscopy in the CE-SO
mode is not subjected to instabilities that could generate
such jumps as measurement artefacts. In the present paper,
such a demonstration is provided, thereby strengthening the
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Figure 1. Sketch of the oscillating probe/cantilever system.

above-mentioned model, and more generally describing the
instabilities that can be observed by using SO-DFM, with
special attention to the CE mode for which discontinuities in
the approach curves have been observed experimentally. An
air-operating DFM has been considered in this analysis, but
there is no hindrance to extending it also to vacuum-operated
systems.

2. Model

Let us consider a standard dynamic force microscope setup,
comprising a tip mounted on a cantilever and facing a sample
surface (figure 1). Tip–sample separation can be varied,
with L being the separation between their supports. The
physical distance between the apex atoms of the tip and the
local sample surface is indicated by z. In static-mode force
spectroscopy, these quantities are slowly varying. In DFM
instead, surface forces are sensed by detecting amplitude and
frequency perturbations to the nearly sinusoidal motion of the
tip vibrating perpendicularly to the surface. As the cantilever
deflection has a periodic oscillation, z oscillates as z(t) =
L + δ(t), where δ indicates the cantilever deflection, and we
define L = 0 as the separation corresponding to z = 0 with an
undeflected cantilever (δ = 0). Using DFM to diagnose surface
forces is not straightforward, and deconvolution procedures
are required in order to obtain the local tip/sample interaction
potential Fcons(z) from the measured ‘approach curves’ of
frequency shift and oscillation amplitude versus L . For this
purpose, procedures for both constant amplitude (CA) [4]
and CE [5] spectroscopy modes have been developed. The
equivalence of the two modes for spectroscopic applications
has also recently been checked experimentally [13]. Our aim
is instead to analyse general features of SO operation and
stability; therefore, simple model potentials will be assumed,
and a theoretical analysis will be carried out to describe
the features of approach and lever-resonance curves that are
relevant to the study of DFM instability.

Let us briefly recall the working principle of a typical
DFM. The cantilever is made to oscillate by means of
a mechanical excitation, usually induced by a dithering
piezoslab. In non-contact and tapping-mode DFM, the
dithering amplitude Ad and its frequency f are fixed at (or
near) the resonance of the cantilever. The surface interaction
produces changes in the oscillation amplitude A as well as
in its phase difference φ compared to the dithering. In

particular, phase imaging [14] provides information on the
surface composition, by measuring the energy dissipation
occurring at the intermittent contact [15]. SO-DFM operates
instead by means of a self-oscillation, induced by a suitable
amplifier that loops the dithering signal (driving the piezoslab)
with the detected cantilever position [1], so that the oscillation
phase φ must be a constant, as described below. The self-
oscillation can be realized either at fixed A, in the CA mode,
or at fixed Ad, in the CE mode, by means of an automatic gain
control (AGC) [1]. Therefore, both f and Ad are allowed to
vary in CA mode, while both f and A can vary in CE mode.

In a previous publication [16], the description of a SO-
method DFM was given, by carrying out expressions for the
frequency shift � f = f − f0 with respect to the unperturbed
oscillation at f0, and the phase φ. Such quantities are functions
of L , A, Ad, the resonant frequency fr, depending on the
conservative tip/surface interaction Fcons(z), and the effective
quality factor Qeff, which takes into account the dissipation
Psurf taking place between the tip and surface due to a
dissipative force Fdiss(z, dz/dt). The analysis was therefore
restricted to the case of small frequency shift (� f � f0)
in order to obtain simplified relations in which the essential
physics was still contained. The exact solution of the equation
of motion obtained by Fourier analysis with the ansatz z(t) =
A cos(ωt −φ)+constant, where ω = 2π f , gives for the phase:

sin2 φ(A, L) =
(

A

Ad Qeff(A, L)

)2

, (1)

which is the same also in the approximated case, while the
expression of f results:

f (A, L) = f0

√√√√ fr(A, L)

f0
±

√(
Ad

A

)2

− 1

Q2
eff(A, L)

. (2)

The ± signs indicate opposite branches of the resonance
curve (φ > π/2 and <π/2, respectively). fr(A, L) is the
resonance frequency, with φ = π/2 and maximum oscillation
amplitude, while Qeff(A, L) is the effective quality factor that
takes into account surface dissipation. In the approximated
case we have (equation (5) of [16]):

f (A, L) ≈ fr(A, L) ± f0

2

√(
Ad

A

)2

− 1

Q2
eff(A, L)

. (3)

The actual lever motion with surface interaction may
differ slightly from A cos(ωt) by presenting higher harmonic
components. Such modes should be taken into account for
the accurate determination of internal energy dissipation [17];
however, for our analysis we will calculate the effects of Fcons

and Fdiss only on the fundamental-mode component of motion
in the steady state, in order to compare to most of the previous
literature, which follows the same approximation.

The resonance frequency is defined as fr(A, L) =
f0(1 − F1,cons/k A)1/2, where F1,cons = (ω/π)

∫
Fcons(z(t))

cos(ωt) dt . The approximated result of [16] was fr(A, L) ≈
f0(1 − F1,cons/2k A), which is valid for small frequency shift.
The effective quality factor is defined as Qeff = 1/(1/Q +
F1,diss/ f k A), with F1,diss = (ω/π)

∫
Fdiss(z(t), dz(t)/dt)
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sin(ωt) dt . We make explicit the dependence on separation of
the function r , defined as in [7]:

r(A, L) = 1

πk A2

∫ 2π
ω

0
Fcons(z + L)A cos(ωt − φ) d(ωt).

(4)
Therefore, the term r(A, L) corresponds here to (1 −

f 2
r / f 2

0 ), or to −2( fr − f0)/ f0 in the approximated case.
This formulation is equivalent to those of Giessibl [18]
and Durig [19], which have general validity provided that
|Fcons(zc)| � k A, where zc = L − A is the closest approach
distance reached by the tip during its oscillation. Such a
condition is generally satisfied for small frequency shifts.
Equation (2) (and equation (3) for small � f ) is essentially
the generalization of equation (4) of [7] including dissipative
forces.

The definition of zc = L − A should be corrected by
a term �L = A� f/ f0 [16], although this is not generally
recognized. This term stems from the 0th order of the
Fourier decomposition of the interaction force, and might be
of importance for the proper study of sub-nanometre range
interactions, since it implies the recalibration of the distance
axis zc. However, for small frequency shifts the approximated
expression will be used, since the correction �L is negligibly
small and its inclusion would excessively complicate our
analytical treatment.

Both fr and Qeff will be calculated by assuming a realistic
model form of the conservative and dissipative interactions.
For a spherical probe tip of radius a and z < a, the van
der Waals force is −C2/z2 = −(AH/2π)(a/z2). Using
AH = 2 × 10−19 J as the Hamaker constant for a Si probe
and sample, to match the experimental data of [16] we will
use C2 = 10 nN nm2, which corresponds to a tip radius of
about 30 nm. We add a repulsive component C6/z6 that yields
a � fr(zc) that resembles that measured in the repulsive region
in [16], and a minimum at zc = 1.2 nm similar to such data.
Thus Fcons(z) = −C2/z2 + C6/z6, with C6 = 100 nN nm6.
The expression here used for Fcons(z) was chosen instead of
the Morse potential used in [16], because it resulted in more
stable numerical solution of equations (1) and (2), which will
be necessary for the forthcoming analysis. The two potential
forms are very similar, and the qualitative effects investigated
here appear to have no particular dependence on the details of
the potential itself.

From [18], this Fcons yields a resonance shift of:

fr(zc, A) − f0 = f0
(−C2 I (2)z−3/2

c + C6 I (6)z−11/2
c )√

2πk A3/2
, (5)

where I (2)/π = 0.5, and I (6)/π = 0.25. This expression is
valid only for high oscillation amplitudes (A � zc), while in
the general case the frequency shift should be carried out from
equation (2).

For Fdiss, we follow [20] in choosing a dissipative force
that is an exponential times the probe velocity,

Fdiss

(
z,

dz

dt

)
= dz

dt
�e− z

σ , (6)

which, in the case of oscillatory motion with amplitude
A and closest approach zc, yields Fdiss(z, zc, A) ≈
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Figure 2. (a) Resonance curves at fixed separation (L = A0 + σ ,
with A0 = 30 nm, σ = 0.6 nm) for different dissipation coefficients
(in order of decreasing peak amplitude):
� = 0, 3 × 10−8, 10−7, 10−4 and 10−3 kg s−1. (b) Resonance curves
at different separations (L = A0 + 150σ , A0 + σ , A0) in the
dissipative case, for � = 3 × 10−8 kg s−1.

−2π� f (zc, A)[2A(z − zc)]1/2 exp(−z/σ). The surface-
induced power dissipation Psurf results from the integration of
Fdiss over one oscillation period:

Psurf(zc, A) ≈ (2πσ)3/2 A1/2 f (zc, A)�e− zc
σ . (7)

These expressions for Fdiss(z, zc, A) and Psurf(zc, A) are
given in the approximation A � σ , whereas for smaller
oscillation amplitudes the analytical solution becomes more
complicated [20]. Again, to retain a resemblance to the data
of [16], we take σ = 0.6 nm to represent the dissipative force.
The resulting Qeff, related to Psurf(zc, A) as [16]

1

Qeff(zc, A)
= 1

Q
+ π Psurf(zc, A)

k A2
, (8)

therefore has an explicit dependence on frequency shift, which
can be neglected only if we approximate f (zc, A) ≈ f0, hence
for small frequency shifts. In order not to complicate the
analysis, we will make such assumption. The chosen potential
forms are rather general and commonly used in literature [4, 5].
Let us note that for vacuum operation, where Q becomes much
higher, surface dissipation becomes even more important for
the behaviour of the system. Here we choose to treat the air-
operation case only, but there is no hindrance to applying the
same conclusions to vacuum operation.

The evolution of the cantilever resonance curve by
changing the separation L provides a clear illustration of the
behaviour of a DFM system during the performance of an
approach curve. When the tip is far enough from the sample,
no interaction occurs and the resonance curve has a Lorentzian
lineshape. By decreasing L , the nonlinear interaction terms
deform the Lorentzian, giving rise to a typical needle-like
lineshape (see e.g. [7, 16]) characterized by a multivalued
character, i.e. multiple solutions A( f ) for a given range of
frequencies. Dissipative terms in the interaction can inhibit
the appearance of such a needle-like feature. Figure 2 shows
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resonance curves that we used to describe the behaviour
of a DFM in both tapping mode and CE-SO mode. In
figure 2(a), the top of a resonance curve is shown (versus
fixed separation L = A0 + σ , in this case L = 30.6 nm
with A0 = 30 nm) in the case of no dissipation (a needle-
like structure) as well as of four different friction coefficients
within Fdiss (� = 3 × 10−8, 10−7, 10−4 and 10−3 kg s−1).
Thus, with increasing dissipation, eventually the multivalued
curve disappears. The parameters used, maintained for all the
forthcoming calculations unless otherwise specified, are the
following: cantilever spring constant k = 50 N m−1; free
resonance frequency f0 = 263 315 Hz; free quality factor
Q = 280; free oscillation amplitude A0 = 30 nm, which
match with those of [16], and refer to air operation.

Figure 2(b) illustrates the evolution of the resonance curve
as a function of the separation, in the presence of a dissipative
term. The amplitude decreases with L , which would not be
possible without surface dissipation, from simple arguments
of energy conservation. In the case of low dissipation that
is shown (� = 3 × 10−8 kg s−1), a needle-like structure is
still present. The behaviour of a tapping-mode DFM can be
analysed by tracing an f = constant line on this plot and by
following the interceptions of such a line with the resonance
curve while L is changed. It is evident that three solutions
exist for a range of positive frequency shifts, and since in
tapping mode the oscillation phase is free to vary, each of such
states can be sustained by the oscillator; when the tip/sample
interaction deforms the resonance curve in such a way to
eliminate one of the possible states, a jump in amplitude (and
phase) will occur if the system was oscillating in such a state,
otherwise no jumps will occur. Therefore, the actual state of
the system will be determined by its previous history, namely
on how L was varied before (whether increased or decreased).
This illustrates the hysteresis behaviour observed in tapping-
mode approach curves, although alternate descriptions of the
same phenomenon can be given [6].

In the case of the self-oscillator method, the oscillator
loop is subjected to the Barkhausen criterion [21] which
constraints the loop phase and gain to be a constant. In
particular, the overall loop phase must be null, therefore the
phase of the oscillating probe/cantilever system must match
that of the self-oscillator amplifier, which is an adjustable
constant independent of the operating frequency. This locks
the cantilever oscillation phase to a constant value that can be
set by the user by adding a phase shifter into the oscillator
loop. It is evident that, for each L value and consequently
for each resonance curve obtained, the cantilever will oscillate
at the frequency and amplitude compatible with such a phase.
The value of A is carried out as the solution of equation (1)
with φ = φset at a given L . The separation L(A) can be
obtained analytically in the case of the force Fcons(z) used
to calculate equation (5), with an explicit phase dependence,
therefore it could be used to obtain f (A, φ) in this analysis.
However, a numerical solution may be necessary in general.
Afterwards, the corresponding value of f is calculated by
means of equation (2). To visualize the evolution of the
oscillation state on the resonance plot, one should trace an
isophase curve, in place of the simple f = constant line
used for the tapping mode. Such a curve is comprised
of all the oscillation states compatible with a fixed phase
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Figure 3. Isophase curves (a) and zoomed plot in the triple
intersection region (b), for � = 10−4 kg s−1 and the following phase
values: (1) π/2; (2) 1.1π/2; (3) 1.4π/2; (4) 1.43π/2; (5) 1.44π/2;
(6) 1.45π/2; (7) 1.4608π/2 = φc; and (8) 1.52π/2. The resonance
curve for large separation is also drawn.

value. Figure 3 shows an example of isophase curves
plotted together with the free resonance curve. A number of
isophase curves are plotted, corresponding to φ = π/2 and
to several different phase values (>π/2 in the case shown)
representative of different situations as regards the instability
phenomenon (see section 4). If phase is π/2, the cantilever
will oscillate at resonance (maximum oscillation amplitude).
Phase values <π/2 characterize the branch of the resonance
curve towards lower frequencies, while phase values >π/2
concern the higher-frequency branch. In general, each set
phase value univocally determines an oscillation state (A, f )

on the resonance curve, as seen by equations (1) and (2). This
phenomenon (phase locking) happens even in the presence of
surface dissipation (when Qeff < Q).

3. Phase locking

Phase locking characterizes the self-oscillator method just
like ‘frequency locking’ (i.e. fixed frequency operation)
characterizes the tapping mode. In other words, in the SO
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method, frequency is free to vary and phase is fixed, while
in the tapping mode, phase is free to change and frequency
is fixed. Phase locking is inherent in the SO method and
is effective regardless of the operation mode that is adopted;
namely, it is not limited to the CE mode, but also holds in
the CA mode. It is worth noting that the same study here
performed for the CE mode could be conducted as well for the
CA mode, by replotting the resonance curves in the Ad versus
f plane, or better, to retain similarity with the analysis of the
CE mode, on the 1/G versus f plane, where G = Ad/A is
the self-oscillator amplifier gain determined by virtue of the
Barkhausen criterion. Then, the isophase curves should be
calculated by imposing constant A instead of constant Ad in
equations (1) and (2). Such calculations for the CA mode
have not been carried out yet, but even higher stability of
this mode is expected in comparison to the CE mode, based
on the experimental fact that no frequency shift jumps have
been observed in approach curves recorded in CA mode. To
compare with available experimental data in CE mode, only
CE behaviour is investigated in this work; the study of CA
mode, as well as of the high-Q case (vacuum operation) and
of the contribution of higher-order harmonic vibration modes,
will be the subject of further work.

The existence of phase locking reconciles discrepancies
between theoretical predictions of artefacts in approach curves
due to possible instabilities in the SO method with the
experimental observations that instead evidence no such effect.
Gauthier and Tsukada [7] anticipated an instability effect based
on the fact that the needle-like resonance curve of a DFM
cantilever presents multiple states with the same f but different
amplitudes. However, such an effect was never observed
experimentally. In [7] it is indeed assumed that the self-
oscillator will oscillate at the highest amplitude compatible
with the stable solution of the equation of motion. Actually,
though, this cannot be realized using the SO method, since a
fixed phase value is imposed by the SO itself. Therefore, the
assumption made is not compatible with the actual behaviour
of the SO. In particular, no switching between different states
pertaining to the same resonance curve is possible, since
different phase values pertain to each of those states (A, f ).
In a number of subsequent papers [22–24], an explanation of
the high stability found experimentally with the SO method is
attempted by means of transient effects during lateral scanning.
If that was the case, however, the instabilities described in [7]
could be observed at least in the case of very slow (or null)
scanning speed, as well as while recording adiabatically slow
approach curves. Furthermore, dynamic effects on the scan
imply that images recorded by scanning in opposite directions
should be different. Instead, such instabilities, as well as such
asymmetries, were never observed, and the reason is that the
phase locking of the SO method inhibits jumps between points
of the same resonance curve with different phase, thereby
‘stabilizing’ the system. Therefore, it would have been enough
to introduce the fundamental argument of phase locking to rule
out the possibility of such an instability.

A comment by Hölscher et al [25] tried to explain the
unsuccessful predictions of [7] by specifying that an equation
of motion with a delayed time t0 gives a more appropriate
description of the oscillatory states obtained with the SO
method compared to the equation of motion used in [7], by

considering that, in the SO mode, the oscillator is self-driven
by the feedback amplifier. We note, however, that equation (1)
solved in [7] is not necessarily ascribed to a system externally
driven by a sinusoidal driving force, as stated in [25]. Rather,
it is the equation of motion of an oscillating system, used to
carry out its mechanical behaviour (resonance curve), that is,
the amplitude and phase pertinent to a given frequency. The
solution of such an equation describes the physical properties
of the system and is independent of how the oscillation is
excited, either at constant frequency or by the SO method
(constant phase). Instead, equation (1) of [25], derived from
the previous analysis of [4], is solved with the ansatz z(t) =
A cos(ωt), while a phase lag is introduced by time-delaying
the excitation term as z(t − t0), which imposes a phase lag
φ0 = 2π f t0 to the oscillator. No fixed phase is imposed
instead in solving equation (1) of [7], but if we set φ = φ0

in the solution, we must obtain the same result. There can
be no difference between the solutions of equation (1) of [25]
and equation (1) of [7] when φ = 2π f t0, since the equations
become formally identical. Only, in equation (1) of [7] the
frequency is given and the amplitude and phase are found,
while in equation (1) of [25] the time delay is given and the
frequency and amplitude are found. Therefore, by solving
both equations in the full frequency (or time delay) range, the
same resonance curve should be obtained. However, when
f becomes different from the resonant frequency, the time
delay t0 does not correspond to a fixed phase term, but instead
it gives a phase term that changes linearly with frequency.
This corresponds to the behaviour of the self-oscillator circuit
designed to have a fixed time delay, but not to the one designed
to have a fixed phase shift, independent of frequency, which
however is often found in the literature [1, 8, 16, 23, 24].
Thus, in such cases the solution of the time-delayed equation
of motion does not correspond to the physical system realized
in practice, that is, to a phase-locked system. Probably,
the deviations from the actual physical behaviour, obtained
by using equation (1) of [25], could be negligible for small
frequency shift. However, the system is better described by
equation (1) of [7], where a rigorously constant phase can be
imposed. In any case, there is no need to introduce the time-
delayed equation of motion just to explain the stability of the
SO method, since it is enough to assume a constant phase in
the solution of equation (1) of [7] to explain such stability: this
corresponds to assuming phase locking of the self-oscillator.

4. Analysis

By analysing the trend of the isophase curves at different phase
values, possible instabilities affecting the SO method in the
constant-excitation amplitude mode can be evidenced. Con-
sequently, it is worth investigating whether their occurrence
could explain the jumps in frequency shift that are sometimes
observed in the CE mode approach curves [9, 10]. To provide a
thorough view of the problem, our analysis includes both imag-
ing and spectroscopic modes of DFM in the CE-SO mode. For
imaging purposes, it is possible to use either the oscillation
amplitude stabilization [26] (case (i)) or the frequency shift
stabilization [1] (case (ii)) to provide the topographic image
of the surface by adjusting the separation L , by tracing con-
tours of equal dissipative and conservative interaction, respec-
tively (at least for φ = π/2). Conversely, in dynamic force
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Figure 4. Phase plots for � = 10−4 kg s−1 and different separations
((1) L = A0 + 150σ ; (2) L = A0 + σ ; (3) L = A0).

spectroscopy experiments, the separation is swept and varia-
tions in both amplitude and frequency are recorded (case (iii)).
Therefore, in case (i) instabilities would show up in scan im-
ages as ‘jumps’ in L (i.e. in the topography) and/or f while
the distance stabilization feedback loop (maintaining constant
A) is active, whereas in case (ii) jumps in L and/or A would
occur in images while f is stabilized by the feedback loop. Fi-
nally, in case (iii), jumps in f and/or A would occur on the
approach/withdrawal curves obtained by sweeping L .

4.1. Case (i) (stabilized amplitude)

Here, A is held constant by the distance stabilization feedback
loop, Ad is held constant in the CE mode by the self-
oscillator AGC feedback circuit, and φ is constant by virtue
of the SO method, while f and L are allowed to vary. As
stated above, while laterally scanning the surface, changes
in the interaction potential may induce frequency shift and
topography (L) adjustments. Since φ is constant, equation (1)
implies that Qeff(Aset, L) = Aset/Ad sin φ = constant. Since
A = Aset and Ad are constant, L will be adjusted such
that Ad sin φ/Aset = (1/Q + π Psurf/k A2

set). For instance,
� = 0 requires that Aset/Ad sin φ = Q. Thus, as already
known, amplitude variation is not possible with no additional
tip/sample dissipation, hence amplitude stabilization would not
be possible in that case.

Instability may occur if there exist two or more states with
equal A and φ, at different L and/or f . To analyse this issue, it
is necessary to calculate the isophase curves, trace an A = Aset

line, and look for multiple intersections with the isophase
curve. This is necessary because phase does not depend on
A in the same way for any L as in the purely conservative
case; now, different interactions (which depend on L) lead
to a change in the phase/amplitude relationship through the
distance dependence of the term Qeff. This is evident from
figure 4, where phase versus amplitude plots for a given friction
coefficient and different separations are compared. As can be
easily realized graphically, however, in this case such multiple
intersections are not possible.

4.2. Case (ii) (stabilized frequency)

Now, f is held constant by the distance stabilization feedback
loop, Ad is held constant by the AGC, and φ is constant,

while A and L are allowed to vary. While laterally scanning
the sample, changes in the interaction potential may here
induce both amplitude and topography adjustments. From
equations (1), (3) and (7), in the case of small frequency shift
to simplify calculations, we have:

f (A, L) = fr(A, L) − f0 Ad cos φ

2A
. (9)

Since f (A, L) = fset and Ad are constant, both the
resonance frequency shift, induced by conservative potential
changes, as well as the amplitude, determined by the
dissipative interaction, contribute to the adjustment of L in
order to keep the oscillation frequency constant. Only for
φ = π/2, the tip traces surface profiles that only depend on
conservative potential.

In this case, a condition necessary for instability is the
existence of two or more states with equal f and φ, at different
L and/or A. Now, we must trace a f = fset line and look
for multiple intersections with the isophase curve. A check
of multiple solutions is analytically more difficult in this case,
since there are two variables to take into account, namely L
and A. However, by our choice of the model dissipative force
of equation (7), equation (1) can be inverted, thus providing an
explicit L(A); therefore, isophase curves can readily be carried
out. Here we show examples of isophase curves with one to
three intersections with a given frequency fset (figure 3). A
further requirement for the occurrence of instability between
two states in constant frequency-shift mode is that d f/dL has
the same sign, so that distance stabilization can be realized for
both states. For instance, if we stabilize in the ‘repulsive mode’
(i.e. d f/dL < 0), an instability can occur for a different state
provided that d f/dL < 0 for a such state. The switching
between the two states is not spontaneous, but it could be
induced by a fluctuation in the system if the states are close
enough to each other, i.e. if the separation difference between
them is not too big compared to the typical system fluctuations.

In the case of three intersections, we show that there exist
two states with the same sign of d f/dL , thereby switching
between them is possible during DFM imaging. In particular,
triple intersection exists for a phase φ < φc, where φc

depends on the potential and measurement parameters, as
shown later on. Figure 3 shows some possible cases, for a
given value of friction coefficient chosen for best illustration
(� = 10−4 kg s−1). The resonance curve at large separation
‘contains’ all phases and is plotted to show all possible
‘starting points’ of the isophase curves. In contrast, each
plotted isophase curve describes the behaviour of the system
at all possible separations and a single operation phase. The
intersection of the isophase curves with a generic resonance
curve at separation L describes the oscillation state of the
system at such a separation and phase. We note the non-
monotonic shape of the isophase curves, considered as a
function f (A), at φ < φc, intercepting the f = constant
line in three points (figure 3(b)). Note that the instability may
occur between a state with higher amplitude and attractive
interaction (large zc), but where dissipation is already large
enough to provide an inversion of d f/dL , and a state with
lower amplitude (smaller zc) where the interaction is repulsive.
Clearly, the DFM spatial resolution achieved in the attractive
state will be much lower, due to the higher zc, although such an
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(a) (b) (c)

Figure 5. (a) Isophase curves at φset = π/2 for different dissipation coefficients: � = (1) 6 × 10−5, (2) 10−4, (3) 2 × 10−4, (4) 2.5 × 10−4,
(5) 3 × 10−4, and (6) 10−3 kg s−1. (b) Contribution of the resonant frequency to the isophase curves at φset = 1.4608π/2. (c) Isophase curves
at φset = 1.4608π/2.

attractive state may be confused with a repulsive one because
of its derivative d f/dL being negative as well. Therefore, this
instability is similar in many aspects to the typical instability
found in tapping mode, with the difference that, instead of
a phase jump (with a stabilized amplitude) and switching
between an attractive and a repulsive state, here we have
an amplitude jump (with a stabilized frequency). Scanning
instabilities (‘artefacts’) in tapping mode were documented for
instance in [27], while the effect predicted here for the CE-SO
mode is still awaiting experimental verification.

Let us now determine the conditions for the existence of
this instability and the value of the critical phase φc. We look
for stationary points of the derivative (d f/dA)φ=const in order
to identify local extremal points of the isophase curve. If
L(A)φ=const is a monotonic function, each extremal point of
f (A)φ=const corresponds to one and only one extremal point
of f (L)φ=const , which is the relevant function for investigating
instability in topography (L) stabilization.

Since φ = φset is a constant, the stationary points of
f (A, L) (equation (9)) correspond to the solutions of the
equation:(

d f (A, L)

dA

)
φ

=
(

d fr(A, L)

dA

)
φ

+ f0 Ad cos φset

2A2
= 0. (10)

Let us now evaluate (d fr(A, L)/dA)φ=const with our
model potentials. By expressing equation (5) as fr(A, L) =
f0[−M2 Z2(A, φ) + M6 Z6(A, φ)], where M2 = −C2 I (2)/

(21/2πk), M6 = C6 I (6)/(21/2πk), Z2(A, φ) = (L(A) −
A)−3/2 A−3/2, and Z6(A, φ) = (L(A) − A)−11/2 A−3/2, we
have:(

d fr(A, L(A, φ))

dA

)
φ

= f0

[
−M2

(
dZ2(A, φ)

dA

)
φ

+ M6

(
dZ6(A, φ)

dA

)
φ

]
. (11)

From equations (7) and (9), we get explicit forms for L(A)

and its derivative:

L(A, φ) = A − σ
[

1
2 ln A − ln

(
1.6πσ 3/2 f0�Q/k

)
+ ln (A0 sin φ − A)

]
(12)(

dL

dA

)
φ

= 1 − σ

[
1

2A
− 1

A0 sin φ − A

]
. (13)

Using such expressions, both f (A, L(A, φ)) and (d f (A,

L(A, φ))/dA)φ=const can be calculated, allowing analysis
of the general features of the isophase curves related to
equation (9). To illustrate such features, in figure 5(a)
isophase curves at different dissipation coefficients are plotted
for φset = π/2. At the smaller dissipation values, the
isophase curve is characterized by two extremal points: a
local maximum at higher amplitudes, and a local minimum at
lower amplitudes. By increasing the dissipation coefficient,
such extremals disappear and the isophase curve becomes
monotonic.

At φset = π/2 we have that f (A, L) is always equal
to the resonant frequency fr(A, L). For a phase different
from π/2, such a term is added by a term that is divergent
for small amplitudes, � fr(A, φset) = − f0 Ad cos φset/2A, the
sign of which depends on φset being greater or smaller than
π/2. Let us consider a phase value different from π/2 in
order to analyse the effect of such a term. For instance, we
have chosen a value of φset that provides an inflection point
in our isophase curves calculated for � = 10−4 kg s−1, as
shown later (φset = 1.4608π/2, or about 131◦). The trend
of the resonant frequency fr(A, L) is shown in figure 5(b).
It is very similar to that at φset = π/2, except that the free
oscillation frequency is different from f0 and that the trend
becomes monotonic for a lower dissipation coefficient than in
figure 5(a). Figure 5(c) shows f (A, L), that is, including the
effect of � fr, which further lowers such a limiting dissipation
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coefficient. For � = 10−4 kg s−1, we indeed have two extremal
points in both figures 5(a) and (b), while in figure 5(c) an
inflection point is present. For � = 2 × 10−4 kg s−1, instead,
the isophase curve in figure 5(b) already becomes monotonic,
even without the further contribution of � fr.

Conversely, at a fixed dissipation coefficient, a critical
value of phase φc exists, below which the isophase curve is
characterized by two local extremal points, therefore allowing
for instability effects when operating in the constant-frequency
shift mode. Such a critical value can be determined by
solution of equation (10), as in the following example. Let
us evaluate graphically the solutions of equation (10) with
(d fr(A, L)/dA)φ=const given by equation (11), and in the
case of � = 10−4 kg s−1. Figure 6 shows the derivative
(d f (A, L)/dA)φ=const plotted for the same values of phase
used for the isophase curves of figure 3. Hence, its zeros
represent stationary points of the isophase curves. For φ =
1.52π/2 (curve (8)), no intersection exists, therefore the
corresponding isophase curve must be monotonic. This holds
for all phase values greater than the critical phase value
φc, where the derivative is a tangent to the abscissa axis
(curve (7)), meaning that the corresponding isophase curve
is still monotonic but has an inflection point. For φ < φc

(curves (1)–(6)), two zeros exist. Therefore, the isophase curve
must have two local extermal points with opposite curvature,
i.e. one local minimum and one local maximum. Such extremal
points define three distinct regions with alternate sign of the
derivative (d f/dA)φ=const and consequently of (d f/dL)φ=const .
However, for phase values far from φc (that is, 1.4608π/2 in
this case), the first minimum (at small amplitude) corresponds
to amplitude values too small to be achieved in high-amplitude
DFM, and furthermore the condition A � σ would not be
fulfilled in that region. For phase values closer to φc, though,
the amplitude of such a state can be high enough to represent
an actual state of the system. By having a closer look at the
solutions of equation (10) (figure 6) we note that, for instance
at φ = 1.43π/2 (curve (4)), the minimum is located at A ≈
8.5 nm, while the maximum is at A ≈ 14.5 nm. By looking at
the corresponding isophase curve (figure 3(b), curve (4)), as an
example, at � f = 500 Hz three intersections with the isophase
curve exist at amplitudes A1 ≈ 6.5 nm, A2 ≈ 12 nm, and
A3 ≈ 19.5 nm. Amplitudes A1 and A3 present the same sign
of (d f/dA)φ=const < 0, and A1 is reasonably high compared
to σ . However, such states still seem too far apart to lead
to instabilities in actual experiments. For higher dissipation
coefficient values, the two states have the tendency to become
closer, as is visible, for instance, in figure 5(a). Furthermore,
strong fluctuations could also be induced by DFM surface
scanning, due to spatial variations of local potentials. Such
variations may induce instabilities much more efficiently than
just system noise. Therefore, experimental studies are still
needed to evaluate the role of such effects in the actual
DFM performance in CE-SO mode. As for the extension to
vacuum operation, we note that, in such a system, the role of
surface dissipation becomes increasingly important, since the
relative contribution to Qeff of surface dissipation increases for
higher lever-Q, as seen by equation (8). Therefore, since the
appearance of instability is essentially related to the onset of
surface dissipation in the system, the effect is expected to be
present and even enhanced in vacuum systems. Quantitative

Figure 6. Plots of the left-hand term of equation (10) in the same
case and for the same phase values of figure 3.

analysis and comparison to available experimental data will be
the subject of further studies.

In the example of figure 3, the critical phase is higher than
π/2, which is the typical working point of SO experiments.
Therefore, such experiments would be subjected to this kind of
instability effect if the interaction forces were similar to those
used for our calculations (which have been chosen to fit the
actual experiment of [16]) and the dissipation coefficient was
of the order of 10−4 kg s−1. Already, for � = 10−3 kg s−1

though, the critical phase becomes smaller than π/2 (namely,
0.926 05π/2). Then, the usual working point at phase π/2 may
be subjected to instabilities or not, depending on the magnitude
of the surface dissipation.

4.3. Case (iii) (approach curves)

Now, L is to be considered a constant, and there is no distance
stabilization feedback active. In practice, L is swept slowly to
obtain the approach curve, Ad is held constant by the AGC, and
φ is a constant, while f and A are allowed to vary.

During the approach, L is decreased; this means that zc

(which is related to the amount of interaction) can decrease or
increase, depending on A; indeed, the set phase can be met,
since A is allowed to vary. Let us describe the behaviour of
A and � f during the performance of an approach curve with
the aid of figure 7. The behaviour of A versus L is shown
in figure 7(a) as it would appear in actual experiments, for
φ = π/2 < φc and 1.5π/2 > φc for � = 10−4 kg s−1. As
already shown in figure 5 of [16], the trend of A versus the
closest approach zc has a turnaround point (figure 7(b)), hence
a minimum approach distance is reached while decreasing
the separation L and consequently A. The dissipated energy
per cycle, Ediss = Psurf/ f , is also plotted in figure 7(b)
(curve (3)). Ediss increases until E0/4, a quarter of the free
lever energy, at A = A0/2, then decreases again while L
decreases. For A0/2 > A > A0/3, Ediss decreases, although zc

is still decreasing. This is due to the competition between the
increased dissipation stemming from the closer range and the
speed reduction due to the amplitude decrease, which reduces
the viscous damping effect. Minimum zc is reached at A =
A0/3 for the chosen potentials. In general, the amplitude of the
minimum closest-approach zmin

c can be obtained analytically
when the dependence of Ediss on A and zc can be factorized,
and when the explicit expression of zc(A, Ediss) can be carried
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(a) (b)

(c) (d)

Figure 7. Approach curves for the case � = 10−4 kg s−1. (a) A(L) at (1) φ = π/2 < φc and (2) φ = 1.5π/2 > φc; (b) A(zc) (at the same
phase values) and Ediss (curve (3), in units of 30E0); (c) � f (L)—the inset shows the behaviour at large amplitude; (d) � f (zc).

out; zmin
c is found by calculating the stationary point of such a

function, by replacing Ediss with the expression E0 A/A0(1 −
A/A0) [16]. It can be shown that the result A(zmin

c ) = A0/3 is
obtained whenever the dependence on A of Ediss is of the form
A1/2, and is not influenced by the form of its dependence on zc.

A further decrease in L is accompanied by A decreasing
faster than L , so that zc increases and Ediss decreases. Thus,
for A < A0/3, the probe/sample interaction weakens as the
cantilever base moves closer to the surface; additionally, the
maximum Ediss is E0/4 at A = A0/2. The frequency shift
(figure 7(c)) is monotonic for φ > φc, while for φ < φc

the local extremals in the frequency shift appear. The inset
of figure 7(c) shows the expanded view of the frequency shift
curves at larger separation, evidencing the local maximum
for the curve at φ < φc. The frequency shift is initially
increased due to dissipation, afterwards it is decreased due
to the attractive force, and finally increased again due to
repulsion. Note that, since the function A(L) is monotonic and
almost linear (as is visible in figure 7(a)), the frequency shift
curves f (L) are qualitatively similar to the isophase curves
f (A). In figure 7(d), the same curves are plotted versus zc.
Note the curious ‘looping’ of the frequency shift at φ < φc.

For the analysis of instability in the approach curves,
since L is to be considered fixed, we must deal with a single
resonance curve. To identify jumps in either A or f , we should
have points on the resonance curve with different values of A
or f at a definite φ and as we have clearly demonstrated, this is
not permitted in the SO method. Therefore the frequency shift
curves of figure 7(c) (as well as the isophase curves previously
analysed) are followed faithfully during the approach and
withdrawal of the cantilever base to the surface, and no
instability effects are anticipated.

5. Discussion

Instabilities in approach curves, similar to those found in the
tapping mode, seem not to be possible with the SO method,
unless admitting that the interaction potential can be modified
by the tip approach itself. This corresponds, for instance,
to the assumption of hysteretic potentials used to obtain
jumps in frequency shift versus separation curves by numerical
simulations [12]. Other models, however, could be able to
reproduce the experimental evidence of [9, 10]. A ‘plastic’
deformation of the surface sites, in which the tip interaction
helps to overcome some energy barrier to change the surface
structure permanently, could also explain the data. The
comparison between approach and withdrawal frequency shift
curves could indicate whether a plastic deformation concerning
the sample surface structure occurs, or if an intermittent
formation/breaking of a bound state between tip and sample,
as conjectured in [10], takes place. If the withdrawal curve
(the same as the approach curve, but obtained while increasing
L) was identical to the approach curve, this would support the
intermittent bond formation and breaking. On the contrary, if
the withdrawal curve differed substantially from the approach
curve, for instance showing no discontinuity in the frequency
shift, then a permanent change in the surface atom position
induced by the tip would be supported. Indeed, DFM in the
CE-SO mode has been used to achieve surface nanostructuring
at the atomic level [28], supporting the possibility of such
a phenomenon. Recent ab initio simulations [11] succeeded
in reproducing frequency shift jumps, though for a different
system than in [10] (Si/InAs instead of Si/Si), thus supporting
the possibility of periodic bond formation and breaking, which
corresponds to the case of a hysteretic potential. Such a
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potential would imply energy dissipation, equivalent to the area
of the hysteresis loop in the force–separation plot. Recent
experiments support such a velocity-independent dissipation
mechanism as the dominant mechanism in DFM, with respect
to the customarily assumed viscous damping, at least for a
Si/graphite system [29]. Instead, in the case of a single bonding
event, no such velocity-independent dissipation should be
observed. Therefore, it should be possible to discriminate
between the two cases by observing deviations of the amplitude
versus separation curve from the trend typical of a non-
hysteretic potential (figures 7(a) and (b)). Simultaneous
acquisition of frequency and amplitude versus separation
curves in CE-SO mode and reiterated measurements on the
same atomic site, in both approach and withdrawal directions,
would result in useful elements for a correct understanding
of the atomic interaction mechanisms, as probed by dynamic
force spectroscopy.

6. Conclusion

The stability of the constant-excitation amplitude mode of the
self-oscillator method used in dynamic force microscopy was
discussed. The analysis was made by looking for multiple
oscillation states compatible with phase locking occurring in
such a method. Improved stability is confirmed, in comparison
with the conventional constant-frequency (tapping-mode)
DFM, and in accord with experimental observations. In
particular, no instability is anticipated for both constant-
dissipation mode imaging (i.e. distance stabilization with
constant A) and spectroscopic mode (the acquisition of
approach curves). Unstable behaviour is anticipated, for
a set phase lower than a critical phase value φc and in a
limited frequency shift regime, for constant-frequency shift
imaging in the constant-excitation amplitude mode. The high
stability of the SO method indicates that, within the first-order
approximated analysis carried out here, jumps in frequency
shift recorded in dynamic force spectroscopy experiments
are unlikely to be ascribed to instrumental effects, but must
necessarily be due to changes in the tip/sample interaction
potential (intermittent bond formation and breaking, or
permanent surface changes) due to the tip approach to the
surface.
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