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Our goal is to understand the very elaborate Lagran-

gian given by gravity coupled with the Standard Model,

with all its subtleties (V-A, BEH, seesaw, etc etc...)

from basic geometric principles. This requires rethin-

king completely what Geometry is, and the simplest

manner is to start with the simplest question :

“Where are we ?”
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Two questions arise :

Find complete invariants of

geometric spaces, of “shapes”

How can we invariantly specify

a point in a geometric space ?
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The music of shapes

Milnor, John (1964), ”Eigenvalues of the Laplace ope-

rator on certain manifolds”, Proceedings of the Natio-

nal Academy of Sciences of the United States of Ame-

rica 51

Kac, Mark (1966), ”Can one hear the shape of a drum ?”,

American Mathematical Monthly 73 (4, part 2) : 1–23
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Spectrum of disk

2.40483, 3.83171, 5.13562, 5.52008, 6.38016, 7.01559,

7.58834, 8.41724, 8.65373, 8.77148, 9.76102, 9.93611,

10.1735, 11.0647, 11.0864, 11.6198, 11.7915, 12.2251,

12.3386, 13.0152, 13.3237, 13.3543, 13.5893, 14.3725,

14.4755, 14.796, 14.8213, 14.9309, 15.5898, 15.7002 ...
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Vibrations of the square
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It is well known since a famous one page paper of John

Milnor that the spectrum of operators, such as the

Laplacian, does not suffice to characterize a compact

Riemannian space. But it turns out that the missing

information is encoded by the relative position of two

abelian algebras of operators in Hilbert space. Due to

a theorem of von Neumann the algebra of multiplica-

tion by all measurable bounded functions acts in Hilbert

space in a unique manner, independent of the geometry

one starts with. Its relative position with respect to the

other abelian algebra given by all functions of the La-

placian suffices to recover the full geometry, provided

one knows the spectrum of the Laplacian. For some

reason which has to do with the inverse problem, it is

better to work with the Dirac operator.
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The unitary (CKM) invariant

of Riemannian manifolds

The invariants are :

— The spectrum Spec(D).

— The relative spectrum SpecN(M)

(N = {f(D)}).
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Gordon, Web, Wolpert

Gordon, C. ; Webb, D. ; Wolpert, S. (1992), ”Isospec-

tral plane domains and surfaces via Riemannian orbi-

folds”, Inventiones mathematicae
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Two shapes with same spectrum (Chapman).
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Shape I
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Shape II
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Spectrum = {
√
x | x ∈ S},

S = {
5
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Same spectrum

{a2 + b2 | a, b > 0} ∪ {c2/4 + d2/4 | 0 < c < d}

=

{e2/4 + f2 | e, f > 0} ∪ {g2/2 + h2/2 | 0 < g < h}
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Three classes of notes

One looks at the fractional part

1
4 : {e2/4 + f2} with e, f > 0 = {c2/4 + d2/4} with c+ d

odd.

1
2 : The c2/4 + d2/4 with c, d odd and g2/2 + h2/2 with
g + h odd.

0 : {a2 + b2 | a, b > 0} ∪ {4c2/4 + 4d2/4 | 0 < c < d} et
{4e2/4 + f2 | e, f > 0} ∪ {g2/2 + h2/2 | 0 < g < h} with
g + h even.
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Possible chords

The possible chords are not the same. Blue–Red is not

possible for shape II the one which contains the rec-

tangle.
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Points

The missing invariant should be interpreted as giving

the probability for correlations between the possible fre-

quencies, while a “point” of the geometric space X can

be thought of as a correlation, i.e. a specific positive

hermitian matrix ρλκ (up to scale) which encodes the

scalar product at the point between the eigenfunctions

of the Dirac operator associated to various frequencies

i.e. eigenvalues of the Dirac operator.
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It is rather convincing that our faith in outer space

is based on the strong correlations that exist between

different frequencies, as encoded by the matrix gλµ, so

that the picture in infrared of the milky way is not that

different from its visible light counterpart, which can be

seen with a bare eye on a clear night.
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Musical shape ?

The ear is sensitive to ratios of frequencies.

The two sequences

{440,440,440,493,552,493,440,552,493,493,440}

{622,622,622,697,780,697,622,780,697,697,622}

are in the ratio ∼
√

2.

log 3

log 2
∼ 1 +

1

1 + 1
1+ 1

2+1
2

=
19

12
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Towards a musical shape

{qn | n ∈ N} , q = 2
1

12

21/12 = 1.05946... , 31/19 = 1.05953...
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The sphere ?

Spectrum of sphere = {
√
j(j + 1) | j ≥ 0} looks like this

for small values

20 40 60 80 100 120

2

4

6

8

10

27



2000 4000 6000 8000 10 000

20

40

60

80

100

High frequencies of sphere

28



5 10 15 20 25 30 35

5

10

15

20

Musical Shape has Dimension = 0

29



The quantum sphere S2
q

Poddles, Dabrowski, Sitarz, Landi, Wagner, Brain...

{
qj − q−j

q − q−1
| j ∈ N} with multiplicity O(j)
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L. Dabrowski, A. Sitarz, Dirac operator on the stan-

dard Podles’ quantum sphere. Noncommutative geo-

metry and quantum groups (Warsaw, 2001), 49–58,

Banach Center Publ., 61, Polish Acad. Sci., Warsaw,

2003.

L. Dabrowski, F. D’Andrea, G. Landi, E.Wagner, Dirac

operators on all Podles quantum spheres J. Noncomm.

Geom. 1 (2007) 213–239 arXiv :math/0606480

S. Brain, G. Landi, The 3D Spin geometry of the quan-

tum 2-sphere Rev. Math. Phys. 22 (2010) 963–993

arXiv :1003.2150
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d(A,B) = Inf
∫
γ

√
gµ ν dxµ dxν

32



33



Dirac’s square root of the Laplacian
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Spectral triples

(A,H, D) , ds = D−1 ,

d(A,B) = Sup {|f(A)− f(B)| ; f ∈ A , ‖[D, f ]‖ ≤ 1 }

Meter → Wave length (Krypton (1967) spectrum of 86Kr then

Caesium (1984) hyperfine levels of C133)
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Gauge transfos = Inn(A)

Let us consider the simplest example

A = C∞(M,Mn(C)) = C∞(M)⊗Mn(C)

Algebra of n× n matrices of smooth functions on ma-

nifold M .

The group Inn(A) of inner automorphisms is locally iso-

morphic to the group G of smooth maps from M to the

small gauge group SU(n)

1→ Inn(A)→ Aut(A)→ Out(A)→ 1

becomes identical to

1→Map(M,G)→ G → Diff(M)→ 1.
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Einstein–Yang-Mills

We have shown that the study of pure gravity on this

space yields Einstein gravity on M minimally coupled

with Yang-Mills theory for the gauge group SU(n). The

Yang-Mills gauge potential appears as the inner part of

the metric, in the same way as the group of gauge

transformations (for the gauge group SU(n)) appears

as the group of inner diffeomorphisms.
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Geometry from the Quantum

The goal is to reconcile Quantum Mechanics and Gene-

ral Relativity by showing that the latter naturally arises

from a higher degree version of the Heisenberg com-

mutation relations.
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We have discovered a geometric analogue of the Hei-

senberg commutation relations [p, q] = i~. The role of

the momentum p is played by the Dirac operator. It

plays the role of a measuring rod and at an intuitive

level it represents the inverse of the line element ds

familiar in Riemannian geometry

ds = •−−−−−−•
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Position variables

The role of the position variable q was the most difficult

to uncover. The answer that we discovered is to encode

the analogue of the position variable q in the same way

as the Dirac operator encodes the components of the

momenta, just using the Feynman slash.
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Feynman Slash

To be more precise we let Y ∈ A⊗Cκ be of the Feynman

slashed form Y = Y aΓa, and fulfill the equations

Y 2 = κ, Y ∗ = κY (1)

Here κ = ±1 and Cκ ⊂ Ms(C), s = 2n/2, is the Clifford

algebra on n+ 1 gamma matrices Γa, 0 ≤ a ≤ n

Γa ∈ Cκ,
{

Γa,Γb
}

= 2κ δab, (Γa)∗ = κΓa
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Higher Heisenberg equation

The one-sided higher analogue of the Heisenberg com-

mutation relations is then (up to a normalization factor
1

2n/2n!
)

〈Y [D,Y ] · · · [D,Y ]〉 =
√
κ γ (n terms [D,Y ]) (2)
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Volume is quantized

For even n, equation (2), together with the hypothesis

that the eigenvalues of D grow as in dimension n, imply

that the volume, expressed as the leading term in the

Weyl asymptotic formula for counting eigenvalues of

the operator D, is “quantized” by being equal to the

index pairing of the operator D with the K-theory class

of A defined by the projection e = (1 +
√
κY )/2.
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Theorem 1 : bubbles

Let M be a spin Riemannian manifold of even dimension

n and (A,H, D) the associated spectral triple. Then a

solution of the one-sided equation exists if and only if

M breaks as the disjoint sum of spheres of unit volume.

On each of these irreducible components the unit vo-

lume condition is the only constraint on the Riemannian

metric which is otherwise arbitrary for each component.

44



45



Two kinds of quanta

It would seem at this point that only disconnected geo-

metries fit in this framework but this is ignoring an es-

sential piece of structure of the NCG framework, which

allows one to refine (2). It is the real structure J, an

antilinear isometry in the Hilbert space H which is the

algebraic counterpart of charge conjugation.
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Two sided equation

This leads to refine the quantization condition by taking

J into account as the two-sided equation

〈Z [D,Z] · · · [D,Z]〉 = γ Z = 2EJEJ−1 − 1, (3)

where E is the spectral projection for {1, i} ⊂ C of the

double slash Y = Y+ ⊕ Y− ∈ C∞(M,C+ ⊕ C−).
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Geometry =⇒ Standard Model !

It turns out that in dimension 4

C+ = M2(H), C− = M4(C)

which give the algebraic constituents of the Standard

Model exactly in the form of our joint work with Ali

Chamseddine ! ! ! !
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The two maps Y± : M → Sn

One now gets two maps Y± : M → Sn while, for n = 2,4,

(3) becomes,

det
(
eaµ
)

= Ω+ + Ω−, (4)

with Ω± the Jacobian of Y± (the pullback of the volume

form of the sphere).

In the next theorem the algebraic relations between Y±,

D, J, C±, γ are assumed to hold.
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Theorem 2 : Large

Let n = 2 or n = 4.

(i) In any operator representation of the two sided equa-
tion (3) in which the spectrum of D grows as in di-
mension n the volume (the leading term of the Weyl
asymptotic formula) is quantized.

(ii) Let M be a compact oriented spin Riemannian ma-
nifold of dimension n. Then a solution of (4) exists if
and only if the volume of M is quantized to belong to
the invariant qM ⊂ Z defined as the subset of Z

qM = {deg(φ+) + deg(φ−) | φ± : M → Sn,

|φ+|(x) + |φ−|(x) 6= 0, ∀x ∈M,

where deg is the topological degree of the smooth maps
and |φ|(x) is the Jacobian of φ at x ∈M .
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The invariant qM

The invariant qM makes sense in any dimension. For n =

2,3, and any M , it contains all sufficiently large integers.

The case n = 4 is more difficult but for our purposes

it will suffice to know that qM contains arbitrarily large

numbers in the two relevant cases M = S4 and M =

S3 × S1.
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A first shot at QG

Three “variables”, in a fixed Hilbert space with fixed

representation of C±, γ, J :

(D,Y+, Y−)

〈Z [D,Z] · · · [D,Z]〉 = γ

where Z = 2EJEJ−1−1 and E is the spectral projection

for {1, i} ⊂ C of Y = Y+ ⊕ Y−.
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Whitney strong embedding

Let us explain why it is natural from the point of view

of differential geometry also, to consider the two sets of

Γ-matrices and then take the operators Y± as being the

correct variables for a first shot at a theory of quantum

gravity. The first question which comes in this respect

is if, given a compact 4-dimensional manifold M one

can find a map (Y+, Y−) : M → S4 × S4 which embeds

M as a submanifold of S4 × S4.
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Reconstruction of M

A : It is true that the joint spectrum of the Y a+ and

Y b− is of dimension 4 while one has 8 variables.

B : It is it true that the non-commutative integral∫
−γ 〈Y [D,Y ]n〉

remains quantized.

55



Spectral action

The bothering cosmological leading term of the spec-

tral action is now quantized and thus it no longer ap-

pears in the variation of the spectral action which now

reproduces the Einstein equations coupled with mat-

ter. The geometry appears from the joint spectrum of

the Y± and is a 4-dimensional immersed submanifold in

the 8-dimensional product S4×S4. One has the strong

Whitney embedding theorem : M4 ⊂ R4×R4 ⊂ S4×S4.
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Standard Model Spectral Action

Higgs Boson Inner metric(0,1)

Gauge bosons Inner metric(1,0)

Fermion masses Dirac(0,1) in ↑
u, ν

CKM matrix Dirac(0,1) in (↓ 3)
Masses down

Lepton mixing Dirac(0,1) in (↓ 1)
Masses leptons e
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Standard Model Spectral Action

Majorana Dirac(0,1) on
mass matrix ER ⊕ JFER

Gauge couplings Fixed at
unification

Higgs scattering Fixed at
parameter unification

Tadpole constant −µ2
0 |H|2

58



Reduction to SM gauge group

We showed that requiring that these two copies of M

stay a finite distance apart reduces the symmetries from

the group SU(2) × SU(2) × SU(4) of inner automor-

phisms of the even part of the algebra to the symme-

tries U(1)×SU(2)×SU(3) of the Standard Model. This

reduction of the gauge symmetry occurs because of the

order one condition

[[D, a], b0] = 0 , ∀ a, b ∈ A
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Spectral Model

Let M be a Riemannian spin 4-manifold and F the finite

noncommutative geometry of KO-dimension 6 descri-

bed above. Let M × F be endowed with the product

metric.

1. The unimodular subgroup of the unitary group

acting by the adjoint representation Ad(u) in H
is the group of gauge transformations of SM.

2. The unimodular inner fluctuations of the metric

give the gauge bosons of SM.

3. The full standard model (with neutrino mixing

and seesaw mechanism) minimally coupled to
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Einstein gravity is given in Euclidean form by

the action functional

S = Tr(f(DA/Λ)) +
1

2
〈 J ξ̃,DA ξ̃〉 , ξ̃ ∈ H+

cl ,

where DA is the Dirac operator with the unimo-

dular inner fluctuations.



Standard Model

LSM = −
1
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)
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H(ūλju

λ
j )−

g

2

mλ
d

M
H(d̄λj d

λ
j ) +

ig

2

mλ
u

M
φ0(ūλj γ
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First interplay with experiment

Historically, the search to identify the structure of the

noncommutative space followed the bottom-up approach

where the known spectrum of the fermionic particles

was used to determine the geometric data that defines

the space.

This bottom-up approach involved an interesting inter-

play with experiments. While at first the experimental

evidence of neutrino oscillations contradicted the first

attempt, it was realized several years later in 2006 that

the obstruction to get neutrino oscillations was natu-

rally eliminated by dropping the equality between the

metric dimension of space-time (which is equal to 4 as
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far as we know) and its KO-dimension which is only

defined modulo 8. When the latter is set equal to 2

modulo 8 (using the freedom to adjust the geometry

of the finite space encoding the fine structure of space-

time) everything works fine, the neutrino oscillations are

there as well as the see-saw mechanism which appears

for free as an unexpected bonus. Incidentally, this also

solved the fermionic doubling problem by allowing a si-

multaneous Weyl-Majorana condition on the fermions

to halve the degrees of freedom.



Second interplay with experiment

The second interplay with experiments occurred a bit

later when it became clear that the mass of the Brout-

Englert-Higgs boson would not comply with the restric-

tion (that mH � 170 Gev) imposed by the validity of

the Standard Model up to the unification scale.

We showed that the inconsistency between the spec-

tral Standard Model and the experimental value of the

Higgs mass is resolved by the presence of a real sca-

lar field strongly coupled to the Higgs field. This scalar

field was already present in the spectral model and we

wrongly neglected it in our previous computations.
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It was shown recently by several authors, independently

of the spectral approach, that such a strongly coupled

scalar field stabilizes the Standard Model up to unifica-

tion scale in spite of the low value of the Higgs mass.

In our recent work, we show that the noncommutative

neutral singlet modifies substantially the RG analysis,

invalidates our previous prediction of Higgs mass in the

range 160–180 Gev, and restores the consistency of the

noncommutative geometric model with the low Higgs

mass.
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Lesson

One lesson which we learned on that occasion is that

we have to take all the fields of the noncommutative

spectral model seriously, without making assumptions

not backed up by valid analysis, especially because of

the almost uniqueness of the Standard Model (SM) in

the noncommutative setting.
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