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Motivations

• Recent results about large N phase transitions in
models that should describe some black hole mi-
crostates counting. The validity of OSV conjecture
ZBH = |Ztop(gs, t)|2, in these cases, seems to depend
on these phase transitions

• Phase transitions are known to occur in topological
string theory as one decreases the size of the CY
threefold. The critical point is tipically (in Kähler
moduli space) the mirror of a conifold point, and
there is a universal behavior described by c = 1
strings at self-dual radius (BCOV, GV)

• We have now representations of topological string
partition functions based on sums over tableaux
(topological vertex), which are known to undergo
phase transitions as well

• Topological strings and matrix models: matrix mod-
els describe at large N 2D gravity ⇒ relation be-
tween 2D gravity and topological string amplitudes
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Results

• From our previous investigations on the relation be-
tween q-deformed YM theory in 2D and topological
strings it emerged the possibility to study topologi-
cal string amplitudes on bundles over P1 in terms of
matrix models ⇒ in that case it appears a sort of
non perturbative completion for topological strings
(D-branes degrees of freedom) from the sum over
representations ⇒ third order phase transitions

• Surprisingly we find that also a finite N formulation,
reproducing the perturbative topological string on
Xp = O(−p)⊕O(p− 2) → P1, exists: q-deformation
of the Kostov, Staudacher, Wynter (KSW) model
(ordinary KSW is recoverd in a suitable double-
scaling limit p →∞)

• We present a closed expression for the prepotential
for any p at planar level and its conjectured general-
ization at all genus (checked explicitly till genus 4)
⇒ relation between Gromov-Witten invariants and
Hurwitz numbers

• We find phase transitions at small area, but with
different critical behavior (pure gravity rather than
c = 1
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Plan of the talk

• Short review of q-deformed YM theory on the sphere:
relation with topological strings and black-holes.
Deformed Douglas-Kazakov phase transition.

• Small distances and phase transitions in topological
string theory

• Topological strings on Xp = O(−p)⊕O(p− 2) → P1:
matrix model formulation, relation with the KSW
model and Hurwitz theory. Exact results for the
free-energy.

• Phase transitions and new critical behavior in topo-
logical string theory
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Our study was originally motivated by the relation be-
tween q-deformed YM on the sphere and the OSV con-
jecture

Zq
YM =

∑

R

dim2
q(R) q

p

2
C2(R) eiθ C1(R)

where R runs through the unitary irreps of U(N), C1(R)
and C2(R) are respectively its first and second Casimir
invariants and the quantum dimension

dimq(R) =
∏

1≤i<j≤N

[
Ri −Rj + j − i

]
q[

j − i
]
q

with [x]q = q
x

2 − q−
x

2 and q = e−gs. As N →∞, taking into
account coupled U(N) representations:

Zq
YM =

∞∑

l=−∞

∑

R̂1,R̂2

Z+
R̂1,R̂2

(t + p gsl)Z−
R̂1,R̂2

( t̄− p gsl)

The parameter t is related to the gauge theory data as

t = (p− 2)
Ngs

2
+ iθ

When R̂1 = R̂2 = · are the trivial representations

Z±
·,· = Z

Xp

top(t)

Z
Xp

top(t) is the topological string partition function on

Xp = O(−p)⊕O(p− 2) → P1 with Kähler parameter t.

• AOSV intended to check OSV conjecture for type
IIA superstrings compactified on Xp, ZBH = |Ztop(gs, t)|2

• Zq
YM is claimed to compute the exact entropy asso-

ciated to black hole solutions of IIA SUGRA com-
pactified on Xp. At large N (large BH charges)
|Ztop(Xp)|2 should emerge!
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Remark: Notice that they do not have in any case
|Ztop(Xp)|2 but the object they got is Z±

R̂1,R̂2
summed over

the external ”D-branes” ⇒ claimed to represent the non
perturbative completion.

Later it was observed that, at large N , Zq
YM has a third

order phase transition for p > 2 similar to the Douglas-
Kazakov phase transition of 2DYM on the sphere at

tc =
1

2
p(p− 2) log[1 + tan2(

π

p
)]

It is expected that this critical value gives the radius of
convergence of the strong coupling expansion (on which
is based the check of OSV)

The ”small area phase” is instead described by the per-
turbative closed topological string on the resolved coni-
fold O(−1)⊕O(−1) → P1.

It appears interesting to explore the phase structure of
this family of models, particulary in relation with topo-
logical strings and (possibly) black hole physics ⇒ what
happens to geometry at small distances?

We expect that matrix models be relevant in discussing
tableaux sums (on which are based topological string
amplitudes on toric manifolds).

Ztop(X1) =N→∞

∫
DM exp[−N

2t
Tr (logM)2]
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Phase transitions in topological strings

It has been recognized for a long time that string theory
provides in a natural way a deformation of classical ge-
ometry. The deformation parameter is given by `s

R
where

`s is the string length and R is the characteristic size of
the target space.

• `s

R
<< 1 the target geometry can be regarded as a

classical background corrected by stringy effects.

• `s

R
>> 1 the classical geometric intuition breaks down,

use some notion of stringy or quantum geometry.

In the context of type A topological string theory on
CY manifolds (where R is set by the Kähler moduli) the
breakdown of classical geometry can be made precise
quantitatively by looking at the behavior of topological
string amplitudes.

Consider the genus zero free energy at large radius:

F0(t) = F Cl
0 (t) + F St

0 (t) =
C

6
t3 +

∞∑

k=1

N0,ke
−kt

F Cl
0 (t) is the classical contribution, depending on the

triple intersection number C. F St
0 (t) is the stringy part

that is exponentially suppressed at large Kähler parame-
ter t: it comes from world-sheet instantons. N0,k are the
infamous Gromov-Witten invariants ”counting” holo-
morphic maps into the CY.

Remark: F0(t) is a power series in e−t and it will have in
general a finite radius of convergence tc, related to the
asymptotic growth of N0,k.
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Critical behavior in topological strings

The behavior of the series can be parameterized by a
critical exponent γ:

F0(t) ∼
∞∑

k=1

∼ kγ−3ek(tc−t) ∼ (e−tc − e−t)2−γ

By mirror symmetry computations (local P2, the quintic)
it has been found that

N0,k ∼
ektc

k3 log2 k
, k →∞.

this indicates γ = 0 and the critical behavior

F0(t) ∼ (e−tc − e−t)2 log(e−tc − e−t).

Higher genus Gromov–Witten invariants have the asymp-
totic behavior [BCOV]:

Ng,k ∼ k(γ−2)(1−g)−1ektc, k →∞,

thus

F1(t) ∼ c1 log (e−tc − e−t),

Fg(t) ∼ cg(e
−tc − e−t)(1−g)(2−γ), g ≥ 2.

the phase transition at t = tc is common for all Fg(t)
and there is a coherent behavior. t > tc is called Calabi-
Yau phase. For t < tc the nonlinear sigma model is not
well defined and classical geometry is misleading⇒ it
is a ”non-geometric phase”, tipically a CFT (LG orb-
ifolds+perturbations), obtained by mirror symmetry (or
by linear sigma approach).

8



Double-scaling limit

Let us consider the total free energy F as a perturbative
expansion in powers of the string coupling constant gs:

F (gs, t) =
∞∑

g=0

Fg(t)g
2g−2
s .

One can define the double-scaled string coupling as

κ = ags(e
−tc − e−t)γ/2−1

and consider the limit

t → tc, gs → 0, κ fixed

The most singular part of Fg(t) survives at each genus,
and the total free energy becomes the double-scaled free
energy

Fds(κ) = f0κ
−2 + f1 log κ +

∑

g≥2

fgκ
2g−2,

where fg = a2−2gcg.

For the known cases the double-scaled theory coincides
with the free energy of the c = 1 string at the self–dual
radius [GV].
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Topological strings on Xp = O(−p)⊕O(p− 2) → P1

Xp has a single Kähler parameter t measuring the P1.
The partition can be computed at all genus by

• Topological vertex (AKMV)

• Gromov-Witten theory (BP)

ZXp
=

∑

R

W 2
R(q) q(p−2)κR/2(−1)l(R) pe−l(R) t

• li are the lengths of the rows and l(R) =
∑

i li the
total number of boxes

• kR =
∑

i li(li − 2i + 1)

• WR = qκR/4
∏

1≤i<j≤d(l)
[li−lj+j−i]q

[j−i]q

∏d(l)
i=1

∏li
k=1

1
[k−i+d(l)]q

We notice that as gs → 0, WR → g−l(R)
s

dR

l(R)!
: WR can

be seen as a q-deformation of the dimension dR of the
representation R of the symmetric group Sl(R).

This suggests to consider a double-scaling limit

gs → 0, t → +∞, p →∞
taking p gs = τ2/N , (−1)pe−t = (gsN)2e−τ1 fixed. In this

limit topological strings partition function reduces to

ZXp
→ ZHurwitz =

∑

R

(
dR

l(R)!
)2N2l(R)e−τ2

kR
2N e−τ1l(R)

that is the generating functional of simple Hurwitz num-
bers of P1 at all genus and degrees!

10



Simple Hurwitz numbers HP1

g,d(1) are the number of branched

covers of P1 by genus g of degree d having only simple
branched points.

By matching FHurwitz = log[ZHurwitz] and the topological
string free-energy FXp

FXp
(gs, t) =

∞∑
g=0

∞∑

d=1

Ng,d(p)e
−dtg2g−2

s

we get a non-trivial relation between Gromov-Witten
invariants and simple Hurwitz numbers

lim
p→∞

p2−2g−2dNg,d(p) = (−1)p
HP1

g,d(1)c

(2g − 2 + 2d)!

Remark: Topological string on Xp can be considered
as a q-deformation of the Hurwitz model. It is quite
interesting that ZHurwitz can be written as the large N
limit of a finite N model (KSW)

ZKSW =
∑

R

(
dim(R)

ΩR
)e−τ2

kR
2N e−τ1l(R)

with ΩR = N l(R)
∏N

i=1
hi!

(N−i)!
. At planar level ZKSW can

approximated by a matrix model (as Douglas and Kaza-
kov did for QCD2) and studied through saddle-point
technique, leading to exact results for the phase struc-
ture: for large τ1 the planar free energy is

F 0
KSW =

∞∑

k=1

kk−3

k!
τ2k−2
2 e−kτ1

leading to the exact answer HP1

0,d(1)c = dd−3

d!
(2d− 2)!.

Remark: Mathematicians generalized later the answer
at all genus (GJV) but the the general structure is still
controlled by genus zero saddle-point equation!
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Matrix model description of topological strings on Xp

To extract the asymptotic behavior of the GW invari-
ants and to study the free energy we construct a matrix
model for the perturbative closed topological string am-
plitude on Xp at genus zero

ZXp
=

∑

R

W 2
R q(p−2)κR/2e−l(R)t.

Let us introduce at finite N

• qΩR =
∏N

i=1
[hi]!

[N−i]!

• dimq(R) =
∏

1≤i<j≤N

[
li−lj+j−i

]
q[

j−i
]

q

We have

ZXp
= ZqKSW =

∑

R

(
dimq R

qΩR

)2

q(p−1)κR/2e−l(R)t

This model reduces in the limit gs → 0, p → ∞ with
gsp = τ2/N to the KSW model and its leading order in
the large N expansion can be studied in the saddle-point
approximation. Introduce the auxiliary ‘t Hooft param-
eter T = Ngs and continuous variables in the standard
way:

hi

N
=

li

N
− i

N
+ 1 → `(x)− x + 1 = h(x),
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The delicate point is to evaluate the large N limit of the
deformed measure. The numerator of qΩR leads to

log
N∏

i=1

hi∏

j=1

(q
hi−j

2 − q−
hi−j

2 )2 = 2
N∑

i=1

hi∑

j=1

log 2 sinh gs
hi − j

2

which becomes in the large N limit

2N2

T

∫ 1

0
dx

(
T 2h2

4
− π2

6
+ Li2(e

−Th)

)
.

Then we can write the effective action controlling the
leading large N contribution as follows

S = −
∫ 1

0

∫ 1

0
dxdy log

∣∣∣2 sinh
T

2
(h(x)−h(y))

∣∣∣+2

T

∫ 1

0
dxLi2(e

−Th)

+

∫ 1

0
dxh(x)(t−(p−1)T )+

pT

2

∫ 1

0
dxh2(x)+(p−1)

T

3
− π2

3T
−1

2
t.

The planar theory can be, thus, understood as coming
from a matrix model: the effective action can be derived
from a Chern–Simons–like matrix model with a potential
V (h) of the form

V (h) =
2

T
Li2(e

−Th) + (t− (p− 1)T )h +
p T

2
h2,

and the saddle–point equation is simply∫
dh′ρ(h′) coth

T

2
(h−h′) = ph+

2

T
log(1−e−Th)+

t

T
−(p−1),

where the density ρ(h) is defined in terms of the inverse

function x(h) as follows ρ(h) = −dx(h)
dh

. Because of the
positivity constraint h1 > h2 > · · ·hN ≥ 0 ⇒ h(x) ≥ 0,
which the Young tableaux variables hi must satisfy, the
support of ρ(h) will be chosen in the interval [0, a].
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The saddle-point equation can be related to a standard
Riemann-Hilbert problem:
∫ e

e−β

dy

y
ρ(y)

s + y

s− y
= p log s−(t+1)+(p−1)(T−1)−2 log(1−e−1s)

with −β = 1− Ta. The normalization of ρ is now
∫ e

e−β

dy
ρ(y)

y
= T

The support of the density ρ(s) comes from the original
tableau variables h, i.e. [0, a].

To solve the saddle point equation we need a further
ingredient, namely we have to choose an ansatz for the
density ρ(s).

To recover the large radius expansion in e−t the analogy
with QCD2 suggests to choose a chiral, one–cut ansatz:
for x ∈ [−β,−γ] (−γ < 1) the ρ(s) is arbitrary, while for
x ∈ [−γ,1] we require ρ to be equal to 1. The effective
equation to be solved is

∫ e−γ

e−β

dy

y

ρ(y)

s− y
=

p

2s
log s− t− p(T − 1)

2s
− 1

s
log(1− eγs)

Remark: It can be shown that the free energy is T
independent (up overall scaling): in the following T = 1.

14



Let us introduce the variable (defined in terms of the
end-points of the cut)

w =

(
e−

γ

2 + e−
β

2

2

)−2

p

the planar free energy can be exactly computed in terms
of w. It is given by:

F0(w(t), p) = p(p− 2)Li3

(
1− 1

w

)
+ (p− 1)2Li3(1− w)

− p

6
(p− 2)(p− 1)2 log3(w).

The original Riemann-Hilbert problem is encoded into
the algebraic equation (equivalent to the end-points equa-
tions)

e−t = w(p−1)2−1 − w(p−1)2

depending on the Kähler parameter t (with w > e−
t

p(p−2)).

Remark: For p = 1 there is solution for any t and we
obtain the expected resolved conifold free-energy

F (t) = Li3(e
−t)

For p = 2 we have still solution for any t leading to
F (t) = −Li3(e−t) (as expected by mathematicians (FJ)).
The situation drastically changes for p > 2

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06
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0.1
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We want to discuss the large area/CY phase ⇒ t > 0
and large. The solution

w =
∞∑

m=0

(m(p− 1)2 − 2)!

(mp(p− 2)− 1)!m!
e−mt

exists only for t > tc with:

tc = log
(
(p(p− 2))p(2−p)(p− 1)2(p−1)2

)

Remark: The topological string theory on Xp undergoes
a phase transition at tc.

We can rewrite the free energy as

F0(t) =
∞∑

k=1

N0,ke
−kt

with

N0,k =
1

k!k2

((p− 1)2k − 1)!

(((p− 1)2 − 1)k)!
,

By using Stirling’s formula, we obtain

N0,k ∼ ektck−7/2

• We have obtained the genus-zero Gromov-Witten
invariants in closed form (checked with topological
vertex)

• the convergence radius of the string series coincides
with the phase transition point tc

• we have a critical exponent γ = −1
2

different from
all previously known cases!
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Higher-genus and double-scaling

• To define a double–scaled theory we need to un-
derstand the behavior at higher genus: Fg(t) should
have the same critical point

• Important to have a control on higher-genus am-
plitudes to understand how to cross the transition
point (mirror symmetry is not well established in
this case (equivariant case)).

• Important because there are very few cases in which
higher genus are known in closed form

In principle we should compute Fg(t) from summing over
representations. Unfortunately, there is no systematic
way to compute corrections to the saddle–point from
sums over partitions.

⇒ An ansatz suggested by the undeformed case [GJV]
(that can be checked by a vertex computation) allows
us to guess the genus 1 formula as function of w:

F1(t) = − 1

24
log(w−wc)− 1

12
log(p−1)+

1

24
(p2−2p+3) logw

Here wc is the genus zero critical point and the request
of reproducing the (known) critical behavior of Hurwitz
theory (given by the p → ∞ limit) fixes the functional
form (up two coefficients determined by topological ver-
tex comparison).

17



For the higher genus case Fg(t) are conjectured to be
rational functions of the variable w

Fg =
Pg(w, p)

(w − wc)5(g−1)
, Pg(w, p) =

5(g−1)∑

i=1

ag,i(p)(w − 1)i.

The ag,i(p) have the form

ag,i(p) =
bg,i(p)

(p− 1)n
,

n ∈ N and bg,i polynomials in p with rational coefficients.

The conjecture is verified by direct computation up to
g = 4; the ”free” parameter are the 5(g−1) coefficients
ag,i(p), uniquely determined from the genus g Gromov–
Witten invariants up to degree 5(g − 1). For g = 2:

a2,5(p) =
1

2880

p(p− 2)

(p− 1)2

a2,4(p) = − 1

2880

12− 14p + 7p2

(p− 1)4

a2,3(p) =
36− 106 p + 161 p2 − 204 p3 + 171 p4 − 72 p5 + 12 p6

2880(p− 1)8

a2,2(p) = −36− 90 p + 121 p2 − 60 p3 − 5 p4 + 12 p5 − 2 p6

2880(p− 1)10

a2,1(p) = − 1

240

1

(p− 1)10
.

We get closed formulae for the Gromov–Witten invari-
ants Ng,d for all d by using Lagrange inversion (here the
case g = 1 and f = (p− 1)2)

N1,k =
1

24k

k−1∑

`=0

fk−`

`!

∏̀

j=1

(k(f−1)+j−1)− 1

24

(kf − 1)!

k!(k(f − 1))!
(f+2).
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Assuming the critical behavior in w it is easy to compute
the double-scaling. The planar part suggests

µ5/2 = g−2
s

(p− 1)8

4w3
c

(w − wc)
5 = g−2

s

(p− 1)8

4w3
c

A5(e−tc − e−t)
5

2

where A =
√

2
p−1

w
1−(p−1)2/2
c and now consider the limit

t → tc, gs → 0, µ fixed.

The total free energy of the model becomes the double–
scaled free energy FXp

→ Fds(z). Up to genus one

Fds(µ) = − 4

15
µ5/2 − 1

48
log µ + · · · .

This is, at this order, the free energy of 2d gravity,
F(2,3)(µ). We recall that F(2,3)(µ) is determined as a
function of µ by the following equation,

F ′′
(2,3)(µ) = −u(µ),

where u(µ) is a solution of the Painlevé I equation

u2 − 1

6
u′′ = µ

with u(µ) = µ
1

2 + · · · , µ →∞. This leads to the expan-
sion

F(2,3)(µ) = − 4

15
µ5/2 − 1

48
log µ +

∑

g≥2

agµ
−5(g−1)/2

with

a2 =
7

5560
, a3 =

245

331776
, a4 =

259553

159252480
,

an so on. In view of the above results for genus g = 0,1,
it is natural to conjecture that the double–scaled free
energy of topological string theory on Xp equals the
free energy of 2d gravity and in fact the numbers ag are
reproduced by our results (up to genus 4).
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The non-perturbative proposal

Coming back to the OSV conjecture (AOSV formula-
tion): Zq

YM has been proposed to provide a non-perturbative
definition of ZXp

.

Zq
YM undergoes a large N third-order phase transition

for p > 2 when the Kähler parameter reaches the critical
point:

tnp(p) =
1

2
p(p− 2) log

(
1 + tan2

(π

p

))
.

We expect that this critical value tnp(p) gives the con-
vergence radius of the strong coupling expansion of Zq

YM.

Remark: Both the perturbative theory ZXp
and the non-

pertubative definition Zq
YM undergo a phase transition at

small radius for p > 2. ⇒ It is interesting to compare
the critical behaviors as a further probe of the proposal.

• The first things to compare are the radii of conver-
gence tc(p) and tnp(p), as a function of p. In the
perturbative theory, one has

tc → 2 log p, p →∞,

while

tnp → π2

2
, p →∞.

Therefore, at large p, the proposed nonperturbative
completion has better convergence properties as a
function of t at small radius.
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• We have some evidence that double–scaled free en-
ergy F (µ) of Zq

YM is determined by

F ′′(µ) = v(µ)2/4

where v(µ) satisfies the Painlevé II equation

2v′′ − v3 + µv = 0.

This also describes the universality class of the Gross–
Witten–Wadia unitary matrix model and of pure 2d
supergravity.

Interestingly, it is well–known that the Painlevé I
equation does not define 2d gravity beyond the per-
turbation regime, since the resulting series for the
specific heat is not Borel summable. In contrast,
the Painlevé II equation has a unique real, pole–free
solution with the right asymptotic properties which
therefore gives the non–perturbative solution of the
theory. This is consistent with the proposal that q-
deformed 2d Yang–Mills leads to a nonperturbative
definition of topological string theory on Xp.
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