On the moduli space of semilocal vortices and lumps

Walter Vinci

Department of Physics University of Pisa

"Supersymmetry, Supergravity, Superstrings" Pisa - March 19-21, 2007

Work in progress with M. Eto, J. Evslin, K. Konishi, G. Marmorini, M. Nitta, K. Ohashi, N. Yokoi

< □ > < □ > < □ > < □ > < □ > < □ > = □

Outline

Non-Abelian Semilocal Vortices
 The Moduli Space

• A Duality for Semilocal Vortices

B The Lump Limit

Vortices and Lumps

< ≣ >

< ≣⇒

Outline

Non-Abelian Semilocal Vortices

- The Moduli Space
- A Duality for Semilocal Vortices

The Lump Limit

Vortices and Lumps

< 17 b

∢ ≣ ≯

Outline

Non-Abelian Semilocal Vortices

- The Moduli Space
- A Duality for Semilocal Vortices

3 The Lump Limit

• Vortices and Lumps

< 🗇 🕨

-≣->

Semilocal Vortices and Lumps

- Vortices are codimension 2 objects stabilized by $\pi_1(G_{gauge})$;
- Lump solutions are codimension 2 objects stabilized by $\pi_2(\mathcal{M}_{target})$.

Much is known about abelian semilocal vortices:

- the term "semilocal" means that both global and local symmetries are relevant;
- semilocal vortices emerge when "large" global symmetries are present;
- they have size moduli like lump solutions;
- they interpolate between ANO ("local") vortices and lumps.

・ロト ・日本 ・モート ・モート

Semilocal Vortices and Lumps

- Vortices are codimension 2 objects stabilized by $\pi_1(G_{gauge})$;
- Lump solutions are codimension 2 objects stabilized by $\pi_2(\mathcal{M}_{target})$.

Much is known about abelian semilocal vortices:

- the term "semilocal" means that both global and local symmetries are relevant;
- semilocal vortices emerge when "large" global symmetries are present;
- they have size moduli like lump solutions;
- they interpolate between ANO ("local") vortices and lumps.

イロト イヨト イヨト イヨト

Semilocal Vortices and Lumps

- Vortices are codimension 2 objects stabilized by π₁(G_{gauge});
- Lump solutions are codimension 2 objects stabilized by $\pi_2(\mathcal{M}_{target})$.

Much is known about abelian semilocal vortices:

- the term "semilocal" means that both global and local symmetries are relevant;
- semilocal vortices emerge when "large" global symmetries are present;
- they have size moduli like lump solutions;
- they interpolate between ANO ("local") vortices and lumps.

The same and much more is going to happen in the non-abelian case!

ヘロン 人間と 人間と 人間と

Motivations

Semilocal strings and lumps have fundamental role in broad area of physics. Just two examples that we investigated:

- Cosmology: Cosmic Strings
 - GUT models have typically large global symmetries;
 See PRL 98:091602,2007, M. Eto et al. (hep-th/0609214), about the issue of reconnection.
- Strongly Coupled Gauge Theories:
 - Large flavor symmetries are needed to preserve non abelian gauge symmetry;
 See hep-th/0611313, M. Eto et al. about confinement and non abelian duality.

・ロト ・日本 ・モート ・モート

Motivations

Semilocal strings and lumps have fundamental role in broad area of physics. Just two examples that we investigated:

- Cosmology: Cosmic Strings
 - GUT models have typically large global symmetries; See PRL 98:091602,2007, M. Eto et al. (hep-th/0609214), about the issue of reconnection.
- Strongly Coupled Gauge Theories:
 - Large flavor symmetries are needed to preserve non abelian gauge symmetry;
 See hep-th/0611313, M. Eto et al. about confinement and non abelian duality.

イロン イヨン イヨン イヨン

Motivations

Semilocal strings and lumps have fundamental role in broad area of physics. Just two examples that we investigated:

- Cosmology: Cosmic Strings
 - GUT models have typically large global symmetries; See PRL 98:091602,2007, M. Eto et al. (hep-th/0609214), about the issue of reconnection.
- Strongly Coupled Gauge Theories:
 - Large flavor symmetries are needed to preserve non abelian gauge symmetry;
 See hep-th/0611313, M. Eto et al. about confinement and non abelian duality.

イロト イヨト イヨト イヨト

The Moduli Space A Duality for Semilocal Vortices

The Model

Non abelian $U(N_{\rm C})$ gauge theory with $N_{\rm F}$ "fundamental" flavour

$$\mathcal{L} = \mathrm{Tr}\,\left[-\frac{1}{2g^2} \textit{F}_{\mu\nu}\,\textit{F}^{\mu\nu} - \mathcal{D}_{\mu}\,\textit{H}\,\mathcal{D}^{\mu}\textit{H}^{\dagger} - \frac{g^2}{4}\left(\xi\,\boldsymbol{1}_{N_{\mathrm{C}}} - \textit{H}\,\textit{H}^{\dagger}\right)^2\right]$$

where H is the $N_{\rm C} imes N_{\rm F}$ matrix of squark fields;

- Bosonic sector of $\mathcal{N} = 2$ SUSY theory;
- The FI term ξ puts the theory on a Higgs branch: $\mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}}$;
- Non abelian BPS vortices supported by $\pi_1[U(N_{\rm C})] = \mathbb{Z}$.

To have semilocal vortices we must take $N_{
m F}\equiv N_{
m C}+ ilde{N}_{
m C}>N_{
m C}$

・ロト ・日本 ・モート ・モート

The Moduli Space A Duality for Semilocal Vortices

The Model

Non abelian $U(N_{\rm C})$ gauge theory with $N_{\rm F}$ "fundamental" flavour

$$\mathcal{L} = \mathrm{Tr}\,\left[-\frac{1}{2g^2} \textit{F}_{\mu\nu}\,\textit{F}^{\mu\nu} - \mathcal{D}_{\mu}\,\textit{H}\,\mathcal{D}^{\mu}\textit{H}^{\dagger} - \frac{g^2}{4}\left(\xi\,\boldsymbol{1}_{N_{\mathrm{C}}} - \textit{H}\,\textit{H}^{\dagger}\right)^2\right]$$

where H is the $N_{\rm C} imes N_{\rm F}$ matrix of squark fields;

- Bosonic sector of $\mathcal{N} = 2$ SUSY theory;
- The FI term ξ puts the theory on a Higgs branch: $\mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}}$;
- Non abelian BPS vortices supported by $\pi_1[U(N_{\rm C})] = \mathbb{Z}$.

To have semilocal vortices we must take $N_{
m F}\equiv N_{
m C}+ ilde{N}_{
m C}>N_{
m C}$

イロン イヨン イヨン イヨン

The Moduli Space A Duality for Semilocal Vortices

The Model

Non abelian $U(N_{\rm C})$ gauge theory with $N_{\rm F}$ "fundamental" flavour

$$\mathcal{L} = \mathrm{Tr}\,\left[-\frac{1}{2g^2} \textit{F}_{\mu\nu}\,\textit{F}^{\mu\nu} - \mathcal{D}_{\mu}\,\textit{H}\,\mathcal{D}^{\mu}\textit{H}^{\dagger} - \frac{g^2}{4}\left(\xi\,\boldsymbol{1}_{N_{\mathrm{C}}} - \textit{H}\,\textit{H}^{\dagger}\right)^2\right]$$

where H is the $N_{\rm C} imes N_{\rm F}$ matrix of squark fields;

- Bosonic sector of $\mathcal{N} = 2$ SUSY theory;
- The FI term ξ puts the theory on a Higgs branch: $\mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}}$;
- Non abelian BPS vortices supported by $\pi_1[U(N_{\rm C})] = \mathbb{Z}$.

To have semilocal vortices we must take $N_{\rm F} \equiv N_{\rm C} + \tilde{N}_{\rm C} > N_{\rm C}$

・ロト ・日本 ・モート ・モート

The Moduli Space A Duality for Semilocal Vortices

The Moduli Matrix: $H_0(z)$

The BPS equation for the vortices can be put in the following form:

$$\partial_z(\Omega^{-1}\bar{\partial}_z\Omega) = \frac{g^2}{4} \left(\xi \mathbf{1}_{N_{\rm C}} - \Omega^{-1}H_0H_0^{\dagger} \right); \quad W_1 + i W_2 = -2 i S^{-1}(z,\bar{z}) \,\bar{\partial}_z S(z,\bar{z}),$$

where we defined:

$$H \equiv S^{-1}(z,\bar{z}) H_0(z), \quad \Omega \equiv S(z,\bar{z})S^{\dagger}(z,\bar{z}), \quad z \equiv x_1 + i x_2$$

- $H_0(z)$ is an arbitrary $N_{\rm C} \times N_{\rm F}$ holomorphic matrix which contains all the moduli of the BPS equations as coefficients of its polynomial entries;
- The number of vortices, k, is defined by: det $H_0H_0^{\dagger} \sim |z|^{2k}$ for large z;
- The set of physically inequivalent H_0 define the moduli space of vortices:

 $\mathcal{M}_{N_{\mathrm{C}},N_{\mathrm{F}};k}$

イロン 不良と 不良と 不良と

The Moduli Space A Duality for Semilocal Vortices

The Moduli Matrix: $H_0(z)$

The BPS equation for the vortices can be put in the following form:

$$\partial_z(\Omega^{-1}\bar{\partial}_z\Omega) = \frac{g^2}{4} \left(\xi \mathbf{1}_{N_{\rm C}} - \Omega^{-1}H_0H_0^{\dagger} \right); \quad W_1 + i W_2 = -2 i S^{-1}(z,\bar{z}) \,\bar{\partial}_z S(z,\bar{z}),$$

where we defined:

$$H \equiv S^{-1}(z,\bar{z}) H_0(z), \quad \Omega \equiv S(z,\bar{z})S^{\dagger}(z,\bar{z}), \quad z \equiv x_1 + i x_2$$

- $H_0(z)$ is an arbitrary $N_{\rm C} \times N_{\rm F}$ holomorphic matrix which contains all the moduli of the BPS equations as coefficients of its polynomial entries;
- The number of vortices, k, is defined by: det $H_0H_0^{\dagger} \sim |z|^{2k}$ for large z;
- The set of physically inequivalent H_0 define the moduli space of vortices:

 $\mathcal{M}_{N_{\mathrm{C}},N_{\mathrm{F}};k}$

イロン 不良と 不良と 不良と

The Moduli Space A Duality for Semilocal Vortices

Moduli Space of Semilocal Vortices

The Kähler quotient construction

 $\mathcal{M}_{N_{\mathrm{C}},N_{\mathrm{F}};k}$, is isomorphic to the quotient:

 $\mathcal{M}_{N_{\mathrm{C}},N_{\mathrm{F}};k} = \{(\mathsf{Z}, \Psi, \tilde{\Psi}) : GL(k, \mathsf{C}) \text{ free on } (\mathsf{Z}, \Psi)\}/GL(k, \mathsf{C}).$

- $Z_{k \times k}$, $\Psi_{N_{\rm C} \times k}$ and $\tilde{\Psi}_{k \times \tilde{N}_{\rm C}}$ are constant matrices;
- The action of $\mathcal{V} \in GL(k, \mathbf{C})$ is: $(\mathcal{V}\mathbf{Z}\mathcal{V}^{-1}, \Psi\mathcal{V}^{-1}, \mathcal{V}\tilde{\Psi})$;
 - These matrices collect all the parameters contained in the moduli matrix H_0 ;
- they contain all zero modes of squarks and gauge fields

イロン 不同と 不同と 不同と

The Moduli Space A Duality for Semilocal Vortices

Parent Spaces and "Dual" Regularizations

Consider the "parent" set:

$$\hat{\mathcal{M}}_{N_{\mathrm{C}},\tilde{N}_{\mathrm{C}};k}^{parent} = \{\mathsf{Z}, \mathbf{\Psi}, \tilde{\mathbf{\Psi}}\}/\mathit{GL}(k,\mathsf{C})$$

- This quotient space is in general singular and non-Hausdorff;
- A non-Hausdorff space has distinct points with no distinct neighborhoods;

The set $\hat{\mathcal{M}}_{N_{\mathrm{C}},\tilde{N}_{\mathrm{C}};k}^{parent}$ is symmetric under a kind of $\mathcal{N} = 2$ Seiberg duality: $N_{\mathrm{F}} \leftrightarrow N_{\mathrm{F}}, \quad N_{\mathrm{C}} \leftrightarrow \tilde{N}_{\mathrm{C}} = N_{\mathrm{F}} - N_{\mathrm{C}}$ \downarrow Two dual regularizations

・ロン ・四マ ・ヨマ ・ヨマ

The Moduli Space A Duality for Semilocal Vortices

Parent Spaces and "Dual" Regularizations

Consider the "parent" set:

$$\operatorname{\mathsf{regular}} \leftarrow \mathcal{M}_{N_{\mathrm{C}},N_{\mathrm{F}};k} \subset \hat{\mathcal{M}}_{N_{\mathrm{C}},\tilde{N}_{\mathrm{C}};k}^{\operatorname{parent}} = \{\mathsf{Z}, \Psi, \tilde{\Psi}\}/\mathit{GL}(k,\mathsf{C})$$

- This quotient space is in general singular and non-Hausdorff;
- A non-Hausdorff space has distinct points with no distinct neighborhoods;

The set $\hat{\mathcal{M}}_{N_{\mathrm{C}},\tilde{N}_{\mathrm{C}};k}^{parent}$ is symmetric under a kind of $\mathcal{N} = 2$ Seiberg duality: $N_{\mathrm{F}} \leftrightarrow N_{\mathrm{F}}, \quad N_{\mathrm{C}} \leftrightarrow \tilde{N}_{\mathrm{C}} = N_{\mathrm{F}} - N_{\mathrm{C}}$ \downarrow Two dual regularizations

・ロン ・回 と ・ ヨ と ・ ヨ と

Parent Spaces and "Dual" Regularizations

Consider the "parent" set:

$$\operatorname{\mathsf{regular}} \leftarrow \mathcal{M}_{N_{\mathrm{C}},N_{\mathrm{F}};k} \subset \hat{\mathcal{M}}_{N_{\mathrm{C}},\tilde{N}_{\mathrm{C}};k}^{\operatorname{parent}} = \{\mathsf{Z}, \Psi, \tilde{\Psi}\}/\mathit{GL}(k,\mathsf{C})$$

- This quotient space is in general singular and non-Hausdorff;
- A non-Hausdorff space has distinct points with no distinct neighborhoods;

イロン イヨン イヨン イヨン

The Moduli Space A Duality for Semilocal Vortices

The "half" Duality-Diagram

 $\hat{\mathcal{M}}^{parent}_{\substack{\mathbf{N}_{\mathbf{C}},\tilde{\mathbf{N}}_{\mathbf{C}};k}$

• We must regularize the parent set keeping only a regular subspace...

$$\hat{\mathcal{M}}_{\underline{N_{C}},\underline{\tilde{N}_{C}};k}^{parent} = \{\mathbf{Z}, \mathbf{\Psi}, \tilde{\mathbf{\Psi}}\}/GL(k, \mathbf{C})$$

イロン イヨン イヨン イヨン

The Moduli Space A Duality for Semilocal Vortices

The "half" Duality-Diagram

 \bullet ...we can choose the moduli space of semilocal vortices when the gauge group is $N_{\rm C}...$

$$\mathcal{M}_{N_{\mathbf{C}},N_{\mathbf{F}};k} = \{\mathbf{Z}, \mathbf{\Psi}, \tilde{\mathbf{\Psi}}\}/GL(k, \mathbf{C}) \text{ with } (\mathbf{Z}, \mathbf{\Psi}) \text{ free }$$

イロン 不同と 不同と 不同と

The Moduli Space A Duality for Semilocal Vortices

The "half" Duality-Diagram

 $\bullet\,$...or take the moduli space of semilocal vortices when the gauge group is $\tilde{N}_{\rm C}$

$$\mathcal{M}_{\tilde{N}_{\mathrm{C}},N_{\mathrm{F}};k} = \{\mathsf{Z}, \Psi, \tilde{\Psi}\}/GL(k, \mathsf{C}) \quad \text{with } (\mathsf{Z}, \tilde{\Psi}) \text{ free}$$

イロン イヨン イヨン イヨン

The Moduli Space A Duality for Semilocal Vortices

The "half" Duality-Diagram

Deep relation between the dual spaces:

- They are "birationally" equivalent;
- They are linked by geometric transitions.

- ∢ ≣ >

The Moduli Space A Duality for Semilocal Vortices

The Simplest Example: $N_{
m C} = ilde{N}_{
m C} = 1\,(N_{
m F}=2)$, k=1

A single semilocal vortex in an abelian self dual theory

The parent space contains a weighted projective space with mixed weights:

$$\hat{\mathcal{M}}_{\mathbf{1},\mathbf{1};\mathbf{1}}^{\textit{parent}} = \{Z,\Psi,\tilde{\Psi}\}/\mathbf{C}^* = \mathbf{C}(Z) \times W\mathbf{C}P_{(\mathbf{1},-1)}^1(\Psi,\tilde{\Psi})$$

 $WCP_{(1,-1)}^1 = \{(\Psi, \tilde{\Psi}) \sim (\lambda \Psi, \lambda^{-1} \tilde{\Psi})\}$ is non-Hausdorff:

- It contains two distinct points: $(1,0) \neq (0,1)...$
 - \blacktriangleright ... with no distinct neighborhood: $(1,\epsilon)\sim(\epsilon,1)$, with $\epsilon\ll 1$
- To regularize this space we throw away $(0,1)_{\Psi not free}$ or $(1,0)_{\tilde{\Psi} not free}$
- In both case the regularized spaces are: $W \mathbb{C}P^{1}_{(1,-1)}|_{regul.} = (1, \Psi \tilde{\Psi}) \sim (\Psi \tilde{\Psi}, 1) = \mathbb{C}(\Psi \tilde{\Psi})$

イロト イヨト イヨト イヨト

The Moduli Space A Duality for Semilocal Vortices

The Simplest Example: $N_{
m C} = ilde{N}_{
m C} = 1\,(N_{
m F}=2)$, k=1

A single semilocal vortex in an abelian self dual theory

The parent space contains a weighted projective space with mixed weights:

$$\hat{\mathcal{M}}_{\mathbf{1},1;1}^{parent} = \{Z, \Psi, \tilde{\Psi}\} / \mathbf{C}^* = \mathbf{C}(Z) \times W \mathbf{C} \mathcal{P}_{(\mathbf{1},-\mathbf{1})}^1(\Psi, \tilde{\Psi})$$

 $WCP_{(1,-1)}^1 = \{(\Psi, \tilde{\Psi}) \sim (\lambda \Psi, \lambda^{-1} \tilde{\Psi})\}$ is non-Hausdorff:

- It contains two distinct points: $(1,0) \neq (0,1)...$
 - ... with no distinct neighborhood: $(1,\epsilon)\sim(\epsilon,1)$, with $\epsilon\ll 1$
- To regularize this space we throw away $(0,1)_{\Psi not free}$ or $(1,0)_{\tilde{\Psi} not free}$
- In both case the regularized spaces are: $W \mathbf{C} P^{1}_{(1,-1)}|_{regul.} = (1, \Psi \tilde{\Psi}) \sim (\Psi \tilde{\Psi}, 1) = \mathbf{C}(\Psi \tilde{\Psi})$

・ロン ・回と ・ヨン・

The Moduli Space A Duality for Semilocal Vortices

The Simplest Example: $N_{
m C} = ilde{N}_{
m C} = 1\,(N_{
m F}=2)$, k=1

A single semilocal vortex in an abelian self dual theory

The parent space contains a weighted projective space with mixed weights:

$$\hat{\mathcal{M}}_{\boldsymbol{1},\boldsymbol{1};\boldsymbol{1}}^{\textit{parent}} = \{Z,\Psi,\tilde{\Psi}\}/\boldsymbol{\mathsf{C}}^* = \boldsymbol{\mathsf{C}}(Z) \times \textit{W}\boldsymbol{\mathsf{C}}\textit{P}_{(\boldsymbol{1},-1)}^1(\Psi,\tilde{\Psi})$$

 $WCP_{(1,-1)}^1 = \{(\Psi, \tilde{\Psi}) \sim (\lambda \Psi, \lambda^{-1} \tilde{\Psi})\}$ is non-Hausdorff:

- It contains two distinct points: $(1,0) \neq (0,1)...$
 - ... with no distinct neighborhood: (1, ϵ) \sim (ϵ , 1), with $\epsilon \ll 1$
- To regularize this space we throw away $(0,1)_{\Psi not free}$ or $(1,0)_{\tilde{\Psi} not free}$
- In both case the regularized spaces are: $W \mathbb{C}P^{1}_{(1,-1)}|_{regul.} = (1, \Psi \tilde{\Psi}) \sim (\Psi \tilde{\Psi}, 1) = \mathbb{C}(\Psi \tilde{\Psi})$

This gives us the moduli space for a semilocal vortex:

$$\mathcal{M}_{1,2;1} = \mathcal{M}_{1,2;1} = {f C}^2 = {f C}(Z)|_{\textit{position}} imes {f C}(\Psi ilde \Psi)|_{\textit{size}}$$

Vortices and Lumps An example

The Lump Limit

In the limit $g
ightarrow \infty$ we get a non linear sigma model on the Higgs branch:

 $\mathcal{V}_{\textit{Higgs}} = \textit{Gr}_{N_{\rm C},N_{\rm F}},$

which supports lump solutions: $\pi_2(Gr_{N_{\rm C},N_{\rm F}}) = \mathbb{Z}$.

• Semilocal vortices, at g finite, are mapped into lumps in the limit $g \to \infty$;

- Some vortex configurations are mapped into zero size lumps... the limit develops singularities (small lumps singularities).
- The sigma model inherits the natural duality property of Grassmanians:

$$\blacktriangleright \mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}} = Gr_{\tilde{N}_{\rm C},N_{\rm F}}$$

イロト イヨト イヨト イヨト

Vortices and Lumps An example

The Lump Limit

In the limit $g \to \infty$ we get a non linear sigma model on the Higgs branch:

$$\mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}},$$

which supports lump solutions: $\pi_2(Gr_{N_{\rm C},N_{\rm F}}) = \mathbb{Z}$.

- Semilocal vortices, at g finite, are mapped into lumps in the limit $g \to \infty$;
 - Some vortex configurations are mapped into zero size lumps... the limit develops singularities (small lumps singularities).
- The sigma model inherits the natural duality property of Grassmanians:

$$\blacktriangleright \mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}} = Gr_{\tilde{N}_{\rm C},N_{\rm F}}$$

・ロト ・日本 ・モート ・モート

Vortices and Lumps An example

The Lump Limit

In the limit $g \to \infty$ we get a non linear sigma model on the Higgs branch:

$$\mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}},$$

which supports lump solutions: $\pi_2(Gr_{N_{\rm C},N_{\rm F}}) = \mathbb{Z}$.

- Semilocal vortices, at g finite, are mapped into lumps in the limit $g \rightarrow \infty$;
 - Some vortex configurations are mapped into zero size lumps... the limit develops singularities (small lumps singularities).
- The sigma model inherits the natural duality property of Grassmanians:

$$\blacktriangleright \mathcal{V}_{Higgs} = Gr_{N_{\rm C},N_{\rm F}} = Gr_{\tilde{N}_{\rm C},N_{\rm F}}$$

$$\mathcal{M}_{N_{\rm C},\tilde{N}_{\rm C};k}^{lump} = \mathcal{M}_{N_{\rm C},N_{\rm F};k} / \{ \text{singular points} \} = \mathcal{M}_{\tilde{N}_{\rm C},N_{\rm F};k} / \{ \text{singular points} \}$$

・ロト ・日本 ・モート ・モート

Vortices and Lumps An example

The Duality Diagram

• From the moduli space of semilocal vortices $\mathcal{M}_{N_{\rm C},N_{\rm F};k}$ or $\mathcal{M}_{\tilde{N}_{\rm C},N_{\rm F};k}$

イロト イヨト イヨト イヨト

Vortices and Lumps An example

The Duality Diagram

• We can eliminate the sick points in this simple (and duality invariant) way:

$$\mathcal{M}_{N_{\mathbf{C}},\tilde{N}_{\mathbf{C}};k}^{lump} = \mathcal{M}_{N_{\mathbf{C}},N_{\mathbf{F}};k} \cap \mathcal{M}_{\tilde{N}_{\mathbf{C}},N_{\mathbf{F}};k}$$

イロト イヨト イヨト イヨト

Vortices and Lumps An example

Non Abelian Semilocal Vortex: $N_{\rm C}=2$, $N_{\rm F}=3$ Dual To An Abelian Theory: $\tilde{N}_{\rm C}=1$

 $\mathbf{C} \times W\mathbf{C}P^2_{[\mathbf{1},\mathbf{1},-\mathbf{1}]}$

• The space $WCP_{[1,1,-1]}^2(\Psi_1,\Psi_2,\tilde{\Psi})$ has two overlapping subsets:

•
$$\mathbf{C}P^1 = W\mathbf{C}P^2(\Psi_1, \Psi_2, 0)$$

•
$$point = W CP^2(0, 0, \tilde{\Psi}) \sim (0, 0, 1)$$

 $(\Psi_1,\Psi_2,0)\simeq (\Psi_1,\Psi_2,\epsilon\tilde{\Psi})\sim (\epsilon\Psi_1,\epsilon\Psi_2,\tilde{\Psi})\simeq (0,0,\tilde{\Psi})\quad\epsilon\ll 1$

Vortices and Lumps An example

Non Abelian Semilocal Vortex: $N_{\rm C}=2$, $N_{\rm F}=3$ Dual To An Abelian Theory: $\tilde{N}_{\rm C}=1$

• If we throw away the point (0, 0, 1) we get, for the moduli space of lumps:

$$\mathcal{M}_{2,3;k} = \mathbf{C} imes \tilde{\mathbf{C}}^2 \equiv \mathbf{C}(Z)|_{\textit{position}} imes \tilde{\mathbf{C}}^2(\Psi_2/\Psi_1, \tilde{\Psi}\Psi_1)|_{\textit{orientation, size}},$$

where $\tilde{\bm{C}}^2$ is the blow up of \bm{C}^2

イロト イヨト イヨト イヨト

Vortices and Lumps An example

Non Abelian Semilocal Vortex: $N_{\rm C}=2, N_{\rm F}=3$ Dual To An Abelian Theory: $\tilde{N}_{\rm C}=1$

• While if we throw away the **C**P¹...

$$\mathcal{M}_{1,3;k} = \mathbf{C} \times \mathbf{C}^2 \equiv \mathbf{C}(Z)|_{\textit{position}} \times \mathbf{C}^2(\tilde{\Psi}\Psi_1, \tilde{\Psi}\Psi_2)|_{2 \textit{ sizes}}$$

<ロ> (日) (日) (日) (日) (日)

Vortices and Lumps An example

Non Abelian Semilocal Vortex: $N_{\rm C}=2, N_{\rm F}=3$ Dual To An Abelian Theory: $\tilde{N}_{\rm C}=1$

• Here it is easy to see the geometric relation between the moduli spaces of the dual theories:

The moduli space of the non abelian theory is the blow-up of that of the abelian dual theory.

・ロト ・日本 ・モート ・モート

Vortices and Lumps An example

Non Abelian Semilocal Vortex: $N_{\rm C}=2$, $N_{\rm F}=3$ Dual To An Abelian Theory: $\tilde{N}_{\rm C}=1$

- To obtain the moduli space of lumps:
 - eliminate the $\mathbb{C}P^1$ from $\tilde{\mathbb{C}}^2 \to (\mathbb{C}^2)^* = \mathbb{C}^2/(0,0)$
 - eliminate the point from $\mathbf{C}^2 \rightarrow (\mathbf{C}^2)^* = \mathbf{C}^2/(0,0)$

$$\mathcal{M}^{lump}_{\mathbf{2},\mathbf{1};k} = \mathbf{C}(Z) \times (\mathbf{C}^2)^* (\tilde{\Psi} \Psi_1, \tilde{\Psi} \Psi_2)$$

Summary

- The moduli space of semilocal vortices of "dual", $(N_C \leftrightarrow \tilde{N}_C)$, theories descend, after a process of regularization, from the same parent space;
- These dual spaces are linked by geometric transitions;
- In the lump limit they reduce to the same space of lumps;
- They are obtained from the moduli space of lumps by eliminating small lump singularities with insertions of "local" vortices.

イロト イポト イヨト イヨト

Summary

- The moduli space of semilocal vortices of "dual", $(N_C \leftrightarrow \tilde{N}_C)$, theories descend, after a process of regularization, from the same parent space;
- These dual spaces are linked by geometric transitions;
- In the lump limit they reduce to the same space of lumps;
- They are obtained from the moduli space of lumps by eliminating small lump singularities with insertions of "local" vortices.

Outlook:

- There is still much to learn about dynamics: effective actions, non-normalizable modes...
- It would be very interesting to generalize to other gauge groups: SO(N), Usp(N)...