Pisa, 21 March 07

Nonabelian Duality and Confinement: -- Monopoles Seventy-Five Years Later --

K. Konishi, Univ. of Pisa / INFN Pisa

Collaboration with

Carlino, Murayama, Yung, Auzzi, Bolognesi, Evslin, Marmorini, Vinci, Ferretti, Nitta, Yokoi, Ohashi, Eto, ...

Monopoles and Vortices

- Magnetic Monopols in QFT (Dirac 1931)
- Vortex in superconductor (Abrikosov, 1957)
- Vortices in rel. QFT (Nielsen-Olesen, 1973)
- Monopoles in QFT ('t Hooft, Polyakov, 1974)
- Confinement in QCD ('t Hooft, Mandelstam 1980)
- Nonabelian vortices (2003-), monopoles, walls
- Quantum mech. non-Abelian monopoles (1994 2006)

The strategy: a two-front attack

General ideas versus Concrete models: softly broken N=2 supersymmetric SU, SO, USp models

 Fully quantum mechanical analysis. Possible in N=2 susy SU, SO, USp theories with N_f quarks;

• Light monopoles in \underline{r} of various SU(r) magnetic gauge groups

Class of nontrivial superconformal vacua

Seiberg's duality ; Olive-Montonen duality in N=4 susy Cachazo-Douglas-Seiberg-Witten / Dijkgraaf-Vafa '03 How

(QCD?)

 Semi-classical monopoles: homotopy-map, RG, exact symmetries; monopole transformations from vortex moduli

Nonabelian monopoles

$$G \stackrel{\langle \phi
angle
eq 0}{\longrightarrow} H$$

H nonabelian

Goddard-Nuyts-Olive, E. Weinberg, Bais, Schroer,

$$F_{ij} = \epsilon_{ijk} rac{r_k}{r^3} (eta \cdot T), \quad 2 \beta \cdot lpha \in \mathbb{Z}$$
 cfr. (Dirac)
2 m \cdot e $\in \mathbb{Z}$
"Monopoles are multiplets of $\widetilde{\mathsf{H}}$ (GNOW)"

$$\widetilde{\mathsf{H}} = \text{group generated by} \qquad \alpha^* \equiv \frac{\alpha}{\alpha \cdot \alpha}. \qquad \qquad \begin{array}{c|c} \mathsf{H} & \widetilde{\mathsf{H}} \\ \hline \mathsf{U}(\mathsf{N}) & \mathsf{U}(\mathsf{N}) \\ \hline \mathsf{SU}(\mathsf{N}) & \mathsf{SU}(\mathsf{N})/\mathsf{Z}_{\mathsf{N}} \\ \hline \mathsf{SO}(\mathsf{2}\mathsf{N}) & \mathsf{SO}(\mathsf{2}\mathsf{N}) \\ \hline \mathsf{SO}(\mathsf{2}\mathsf{N}+\mathsf{I}) & \mathsf{USp}(\mathsf{2}\mathsf{N}) \end{array}$$

$$egin{aligned} &A_i(\mathbf{r}) = A_i^a(\mathbf{r},\mathbf{h}\cdotlpha)\,S_a; \quad \phi(\mathbf{r}) = \chi^a(\mathbf{r},\mathbf{h}\cdotlpha)\,S_a + [\,\mathbf{h}-(\mathbf{h}\cdotlpha)\,lpha^*]\cdot\mathbf{T}, \ &S_1 = rac{1}{\sqrt{2lpha^2}}(E_lpha+E_{-lpha}); \quad S_2 = -rac{i}{\sqrt{2lpha^2}}(E_lpha-E_{-lpha}); \quad S_3 = lpha^*\cdot\mathbf{T}, \end{aligned}$$

Simple Example:

$$\begin{split} SU(3) & \xrightarrow{\langle \phi \rangle} \frac{SU(2) \times U(1)}{\mathbb{Z}_2}, \qquad \langle \phi \rangle = \begin{pmatrix} v & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & -2v \end{pmatrix} \\ S^1 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \quad S^2 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}; \quad S^3 &= \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \phi(\mathbf{r}) &= \begin{pmatrix} -\frac{1}{2}v & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & -\frac{1}{2}v \end{pmatrix} + 3v\hat{S} \cdot \hat{r}\phi(r), \\ \vec{A}(\mathbf{r}) &= \hat{S} \wedge \hat{r}A(r), \end{split}$$

 $\phi(r)$ and A(r) are BPS- 't Hooft's fnc with

$$\phi(\infty) = 1, \qquad \phi(0) = 0, \qquad A(\infty) = -1/r.$$

 \Rightarrow two *degenerate* SU(3) solutions: Topology: $\Pi_1(\frac{SU(2) \times U(1)}{\mathbb{Z}_2}) = \mathbb{Z}$

Difficulties

Topological obstructions (Abouelsaad et.al) $\Phi = diag(v, v, -2v)$ e.g., In the system SU(3) \rightarrow SU(2)×U(1), \nexists monopoles ~ (2, 1^{*}) "No colored dyons exist" (Abouelsaood, Coleman, ...) 2 Non-normalizable gauge zero modes: cfr. lackiw-Rebbi Monopoles not multiplets of H Flavor Q.N. of monopoles via (Weinberg, Coleman, Nelson, Dorey...) fermion zeromodes The real issue: how do they transform under H? N=1,2, or ∞ ? N.B.: H and H relatively nonlocal

General considerations $G \rightarrow H$

- -Very concept of the dual group to be understood
- H nonabelian \rightarrow Dynamics

H can break itself dynamically (e.g., in pure N=2YM, all monopoles are Abelian)

- "a \widetilde{H} multiplet" well defined if \widetilde{H} weakly coupled (or conformally inv)
- Duality \rightarrow H strongly coupled (tough!) N=2 SU(N) with N_f quarks: \rightarrow "r" vacua with Monopoles in <u>r</u> of SU(r) !!! $r < N_f /2$

 $SU(3) \rightarrow SU(2) \times U(1), \exists monopoles \sim (2^*, I^*)$ do exist

- Phase: study \widetilde{H} in confinement phase: need H in Higgs phase

Study:

$$G \xrightarrow{v_1} H \xrightarrow{v_2} \emptyset, \qquad v_1 \gg v_2,$$

with

$H_{C+F} \subset H_{color} \otimes G_F$

- Flavor symmetry essential:

 H_{C+F} necessary not to break the degeneracy;
 H_{C+F} ⇔ H dual
 H does not grow strong in IR
- $-v_{\gamma}$ as an infrared cut-off
- Low-energy system ($v_I \approx \infty$) has vortices if $\pi_I(H) \neq \emptyset$
- High-energy system (v₂ \approx 0) has regular monopoles if $\pi_{2}(G/H) \neq \emptyset$
- Transformation properties under H_{C+F} from those of nonabelian vortices (Eto et.al., ASY, HT, '06)

Homotopy exact sequence

 $\cdots
ightarrow \pi_2(G)
ightarrow \pi_2(G/H)
ightarrow \pi_1(H)
ightarrow \pi_1(G)
ightarrow \cdots$

- Regular monopoles \Leftrightarrow Kernel of the map $\pi_{I}(H) \Rightarrow \pi_{I}(G)$ Coleman e.g., G=SU(N), USp(2N): $\pi_1 = \emptyset \Rightarrow$ No Dirac monopoles (Wu-Yang) $G=SO(N): \pi_1=Z_2, Z_2$ monopoles; $G=SU(N)/Z_N: Z_N$ monopoles;

Apply to: $G \xrightarrow{v_1} H \xrightarrow{v_2} \emptyset$,

 $-\pi_{1}(G) = \emptyset \Rightarrow$ No regular monopoles: confined by vortices

 $\begin{cases} - If \pi_{I}(G) = \emptyset \implies No \text{ vortices: they "end" at reg monopoles} \\ - If \pi_{I}(G) = Z_{2} \implies No k=2 \text{ vortices: they "end" at reg monopoles!} \end{cases}$

k=1 vortices are there: they would confine Dirac monopoles

't Hooft SO(3)/U(1) $SU(N+I) \Rightarrow U(N) \Rightarrow \emptyset$

Individual vortex breaks

◆ Unbroken exact $SU(N)_{C+F} \subset SU(N)_{C} \times SU(N)_{F}$

Remarks:

 \bigcirc M-V- \overline{M} configurations not topologically stable

- { Vortex breaks via M M pair production (i)
 Vortex become shorter and M and M annihilate (ii)
- but { (ii) Can be stabilized dynamically (rotation)
 but { (i) Resonances: only the lowest composite stable
 cfr. QCD
 q-S-q mesons are analogous (endpoints rotating with the

light velocity: only the lightest mesons are stable) composite

 \Diamond Monopoles (G/H) and vortices (H) both *almost* BPS. \exists Limit in which they become exactly BPS (flux matching)

Softly broken N=2 supersymmetric SU, SO, USp Concrete model $G \Rightarrow H \Rightarrow \emptyset$ G=SU(N+I); H=U(N) $\mathcal{L} = rac{1}{8\pi} {
m Im} \; S_{cl} \left[\int d^4 heta \; \Phi^\dagger e^V \Phi + \int d^2 heta \; rac{1}{2} W W
ight] + \mathcal{L}^{(
m quarks)} + \int \; d^2 heta \; \mu \; {
m Tr} \; \Phi^2;$ $\mathcal{L}^{(ext{quarks})} = \sum_{i} \left[\int d^4 heta \left\{ Q_i^\dagger e^V Q_i + ilde{Q}_i e^{-V} ilde{Q}_i^\dagger
ight\} + \int d^2 heta \left\{ \sqrt{2} ilde{Q}_i \Phi Q^i + m_i \, ilde{Q}_i \, Q^i
ight\}
ight]$ Bosonic Lagrangean semi-classical $\mathcal{L} = rac{1}{4a^2}F_{\mu
u}^2 + rac{1}{a^2}|\mathcal{D}_\mu\Phi|^2 + |\mathcal{D}_\mu Q|^2 + \left|\mathcal{D}_\mu ar{ar{Q}}
ight|^2 - V_1 - V_2,$ $m \gg \mu \gg \Lambda$ $V_2 \;\; = \;\; g^2 |\mu \, \Phi^A + \sqrt{2} \, ilde{Q} \, t^A Q |^2 + ilde{Q} \, [m + \sqrt{2} \Phi] \, [m + \sqrt{2} \Phi]^\dagger \, ilde{Q}^\dagger$ $+ \hspace{0.2cm} Q^{\dagger} \hspace{0.1cm} [m + \overline{\sqrt{2}} \Phi]^{\dagger} \hspace{0.1cm} [m + \sqrt{2} \Phi] \hspace{0.1cm} Q.$ $v_1 = m$ $v_2 = \sqrt{\mu m}$ $\langle \Phi
angle = -rac{1}{\sqrt{2}} \left(egin{array}{ccccc} m & 0 & 0 & 0 \ 0 & \ddots & dots & dots \ 0 & \dots & m & 0 \ 0 & \dots & 0 & -N \, m \end{array}
ight);$ $Q = ilde{Q}^\dagger = egin{pmatrix} d & 0 & 0 & 0 & \cdots \ 0 & \ddots & 0 & \vdots & \vdots & \cdots \ 0 & 0 & d & 0 & 0 & \cdots \ 0 & \dots & 0 & -N \, d & 0 & \cdots \end{pmatrix}, \qquad d = \sqrt{(N+1)\,\mu\,m} \ll m.$ $SU(N+I) \Rightarrow U(N)$

Low-energy U(N) theory

Auzzi et al., Hanany-Tong, Shifman-Yung, Eto, Nitta, Ohashi, Mizoguchi, ..., Sakai

 $\Omega = S S^{\dagger}$

$$\mathcal{L} = rac{1}{4g_N^2}(F^a_{\mu
u})^2 + rac{1}{4e^2}(ilde{F}_{\mu
u})^2 + |\mathcal{D}_\mu q|^2 - rac{e^2}{2}\,|\,q^\dagger\,q - c\,1\,|^2 - rac{1}{2}\,g_N^2\,|\,\,q^\dagger\,t^a q\,|^2,$$

 $egin{aligned} (\mathcal{D}_1 + i\mathcal{D}_2) \,\, q &= 0, \ F_{12}^{(0)} + rac{e^2}{2} \left(c \, 1_N - q \, q^\dagger
ight) &= 0; \qquad F_{12}^{(a)} + rac{g_N^2}{2} \, q_i^\dagger \, t^a \, q_i = 0. \end{aligned}$

$$q=S^{-1}(z,ar{z})\,H_0(z), \ \ \ A_1+i\,A_2=-2\,i\,S^{-1}(z,ar{z})\,ar{\partial}_z S(z,ar{z}),$$

Nonabelian vortex Bogomolnyi equations (HT,ABEKY '03)

Solution

Master equation

S is an invertible matrix $\partial_z \left(\Omega^{-1}\partial_{\bar{z}}\Omega\right) = -\frac{g_N^2}{2} \operatorname{Tr}\left(t^a \Omega^{-1} H_0 H_0^{\dagger}\right) t^a - \frac{e^2}{4N} \operatorname{Tr}\left(\Omega^{-1} H_0 H_0^{\dagger} - 1\right)$

$$H_0(z)$$
 : moduli matrix

- H_0 contains all the moduli parameters;
- $H_0^{\circ} \Rightarrow$ Moduli space/ transformation of the vortices under G_{C+F}
- H_0 defined up to reparametrizations $H_0 \Rightarrow V(z) H_0$; $S \Rightarrow V S$

Detailed study of k=2 (axially symmetric) vortices of $U(N) \Rightarrow \emptyset$ theory

Summary: k=2 (axially symmetric) vortices transform as

<u>3</u> + <u>I</u> Eto, Konishi,Marmorini,Nitta,Ohashi,Vinci,Yokoi

o, Konishi,Marmorini,Nitta,Ohashi,Vinci, токоі '06

 $SO(5) \Rightarrow U(2) \Rightarrow \emptyset$

$$\langle \Phi \rangle = \begin{pmatrix} 0 & iv & 0 & 0 & 0 \\ -iv & 0 & 0 & 0 & 0 \\ 0 & 0 & -iv & 0 & 0 \\ 0 & 0 & -iv & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \simeq T_3^+$$
 These monopoles are confined by k=2 vortices
 \sim transform as $3 + 1$ of SU(2)
 $T_1^{\pm} = -\frac{i}{2}(\Sigma_{23} \pm \Sigma_{41}), \quad T_2^{\pm} = -\frac{i}{2}(\Sigma_{31} \pm \Sigma_{42}), \quad T_3^{\pm} = -\frac{i}{2}(\Sigma_{12} \pm \Sigma_{43}),$ cfr. E.Weinberge
 SO(4) 1234 \sim SU(2) \times SU(2) \rightarrow SU_-(2) \times U_+(1) , SO(3) 125 , SO(3) 345

Min [$\pi_1(U(2))$] AND Min [$\pi_1(U(1))$] ~ transform as 2 of SU(2)_{C+F}

 $SO(2N+I), SO(2N) \Rightarrow U(r) \times U(I) \times U(I) \times \cdots \Rightarrow \emptyset$

Qualitative difference for r=N (maximum rank) and r<N:

♦ H= U(N) monopoles in □ or in ☐ of SU(N)

RG: AF of G: $N_f < 2N-I(2N-2)$ }

IF of H: $N_f > 2N$

♦ H= U(r)x · · · · monopoles in \Box of SU(r): OK for $r < N_f/2$

 \Rightarrow Only light monopoles in \Box of SU(r), $r < N_f/2$ in the full quantum analysis

(Carlino, KK, Kumar, Murayama '01)

 $USp(2N) \Rightarrow U(r) \times U(1) \times U(1) \times \cdots, r \leq N$

G simply connected: Monopoles in r both

 $\begin{cases} \text{from } k=1 \text{ vortices of } \pi_{I}(U(r)) \\ \text{fully quantum analysis} \quad (Carlino, KK, Murayama) \end{cases}$

Fully quantum mechanical analysis at $\mu \sim m \sim \Lambda$

(Carlino, K.K., Kumar, Murayama, 2000, 2001; Hanany-Oz, 1998)

- Semiclassical analysis at μ , m » Λ ;
- Decoupling analysis at $\mu \Rightarrow \infty$, Λ , m fixed;
- Quantum analysis at $\mu \Rightarrow \infty \Lambda(N=1)$ m fixed. N=1 ADS instanton superpotential
- \bullet Fully quantum mechanical analysis at $~~\mu$, m $~\sim~\Lambda;~$ Seiberg-Witten curves

$$y^{2} = \prod_{k=1}^{n_{c}} (x - \phi_{k})^{2} + 4\Lambda^{2n_{c} - n_{f}} \prod_{j=1}^{n_{f}} (x + m_{j})|_{m_{i} = 0}$$

• Low-energy effective actions at μ , m $\sim \Lambda$;

- m perturbation of the conformal invariant points (Eguchi et. al)
- ♦ Vacuum counting

	SU(r)	$U(1)_0$	$U(1)_1$	• • •	$U(1)_{n_c-r-1}$	$U(1)_B$
$n_f imes q$	<u>r</u>	1	0	• • •	0	0
e_1	<u>1</u>	0	1	•••	0	0
•	• •	•	• •	••••	• •	• •
e_{n_c-r-1}	<u>1</u>	0	0	• • •	1	0

- eff

Phases of Softly Broken $\mathcal{N} = 2$ **Gauge Theories**

label (r)	Deg.Freed.	Eff. Gauge Group	Phase	Global Symmetry
0	monopoles	$U(1)^{n_{c}-1}$	Confinement	$U(n_f)$
1	monopoles	$U(1)^{n_{c}-1}$	Confinement	$U(n_f - 1) \times U(1)$
$\leq \left[\frac{n_f - 1}{2}\right]$	NA monopoles	$SU(r) \times U(1)^{n_c - r}$	Confinement	$U(n_f - r) \times U(r)$
$n_f/2$	rel. nonloc.	-	Confinement	$U(n_f/2) \times U(n_f/2)$
BR	NA monopoles	$SU(\tilde{n}_c) \times U(1)^{n_c - \tilde{n}_c}$	Free Magnetic	$U(n_f)$

Table 1: Phases of $SU(n_c)$ gauge theory with n_f flavors. $\tilde{n}_c \equiv n_f - n_c$.

	Deg.Freed.	Eff. Gauge Group	Phase	Global Symmetry
1st Group	rel. nonloc.	-	Confinement	$U(n_f)$
2nd Group	dual quarks	$USp(2\tilde{n}_c) \times U(1)^{n_c - \tilde{n}_c}$	Free Magnetic	$SO(2n_f)$

Table 2: Phases of $USp(2n_c)$ gauge theory with n_f flavors with $m_i \rightarrow 0$. $\tilde{n}_c \equiv n_f - n_c - 2$.

$$\mathcal{W}(\phi, Q, \tilde{Q}) = \mu \operatorname{Tr} \Phi^2 + m_i \tilde{Q}_i Q^i, \qquad m_i \to 0$$

Dual qualks of r vacua are GNO monopoles

QMS of N=2 SQCD (SU(n) with nf quarks)

- N=1 Confining vacua (with $\mu \Phi^2$ perturbation)
- N=1 vacua (with $\mu \Phi^2$ perturbation) in free magnetic pha

QMS of N=2 USp(2n) Theory with nf Quarks

- N=1 Confining vacua (with $\mu \Phi^2$ perturbation)
- N=1 vacua (with $\mu \Phi^2$ perturbation) in free magnetic pha

Various observations

- GNOW monopoles not always the correct IR degrees of freedom SU(N)⇔ SU(N_f-N)
 e.g. USp(2r)⇔SO(2r+1) in N=2 models: wrong symmetry Seiberg duality
- Nonabelian monopoles \sim baryonic components of Abelian monopoles

$$\mathsf{A} \sim \epsilon^{a_1 \dots a_r} q_{a_1}^{i_1} q_{a_2}^{i_2} \dots q_{a_r}^{i_r} \xrightarrow{\longrightarrow} \operatorname{SU}(\mathsf{N}_\mathsf{f}) \text{ flavor}$$

(Neccesary in order not to violate Nambu-Goldstone theorem)

- QCD: if Abelian monopoles $M_i^j \sim (N_f, N_f)$ of $SU(N_f)_L \times SU(N_f)_R$ $\langle M \rangle \neq 0 \Rightarrow$ Confinement & chiral symm. breaking but too many NG bosons
- SCFT vacua in USp : Global symm (SO(2N_f)) not realized by local fields
- Seiberg duality \leftarrow vacuum counting; matching classical and quantum r vacua

Strongly interacting SCFT and confinement

- $r = N_f / 2$ vacua of SU(N) theory; all confining vacua of SO and USp theories with $\mu \sim \Lambda$, m \Rightarrow 0, are nontrivial SCFT
- Relatively nonlocal dyons \Rightarrow no local effective action
- $SU(2) \times U(1)$ vacua of SU(3), $N_f = 4$ theory, $G_f = U(4)$: $4 \underline{2}$ monopoles + 2 $\underline{2}$ dyons Confinement and DSB due to $\langle \in M M \rangle \neq 0$. $U(4) \Rightarrow U(2) \times U(2)$ Auzzi-Grena-KK
- $SU(2) \times U(1)$ vacua of USp(4), $N_f = 4$ theory, $G_f = SO(8)$: 4 <u>2</u> monopoles + 2 <u>2</u> dyons + <u>2</u> quarks. Confinement and DSB due to $\langle M \widetilde{M} \rangle \neq 0$. $SO(8) \Rightarrow U(4)$ Auzzi-Grena

Non abelian	Argyres-Douglas	vacua
	QCD?	

Particles	Charge
M_1, M_2	$(\pm 1, 1, 0, 0)^4$
D_1, D_2	$(\pm 2, -2, \pm 1, 0)$
E_1,E_2	$(0,2,\pm 1,0)$
C_1,C_2	$(\pm2,0,\pm1,0)$

Particles	$(g_1,g_2;q_1,q_2)$
M_1, M_2	$(\pm 1,1;0,0)^4$
D_1,D_2	$(\pm2,-2;\pm1,0)$
E_1,E_2	$(0,2;\pm1,0)$

SCFT

• QCD : a conjecture

Non-Abelian monopoles of dual $SU(3) \longrightarrow U(2) \longrightarrow X$

$$M_{L} \sim (N_{f}, I), M_{R} \sim (I, N_{f}) \text{ of } SU_{L}(N_{f}) \times SU_{R}(N_{f})$$

$$\langle M_{L}M_{R} \rangle \sim \Lambda^{2} \delta_{ij} \qquad (*)$$

(*) leads to confinement / XSB

 $\langle \psi_{L} \psi_{R} \rangle \sim \Lambda^{3} \delta_{ij}$ induced by (*)

Summary:

Many fully quantum-mechanical properties about the nonabelian monopoles in G= SU, SO, USp theories are known (their existence, their q.n., etc.) ('94 - '06)

Nonabelian dual gauge groups occur only in theories with flavor

New results on the vortex moduli in H= U(N) theories $H \Rightarrow \emptyset$ ('03 - '06) \Rightarrow

New results on the vortex-monopole complex in SO(N+2) \Rightarrow SO(N)xU(I) Ferretti, Konishi, '07

Last page

2 Monopole properties from
$$\widetilde{H} \sim H_{C+F}$$
, as seen in $G \Rightarrow H \Rightarrow \emptyset$

 \heartsuit Agreement between 1 and 2

3 Model of confinement (nonabelian) : natural generalization of Nambu, 't Hooft, Mandelstam picture