
Lecture Notes per il Corso di Struttura della Materia

(Dottorato di Fisica, Universit�a di Pisa, 2002):

DENSITY FUNCTIONAL THEORY FOR ELECTRONIC

STRUCTURE CALCULATIONS

Paolo Giannozzi

Scuola Normale Superiore, Piazza dei Cavalieri 7

I-56126 Pisa, Italy

1



Contents

1 Density Functional Theory 3

1.1 The Hohenberg-Kohn Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Kohn-Sham equations and the variational principle . . . . . . . . . . . . . . . . . . 4

1.4 DFT, Hartree-Fock, and Slater's exchange . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Local Density Approximation for the exchange-correlation energy . . . . . . . . . . 6

1.6 Successes and failures of LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 On the physical meaning of Kohn-Sham eigenvalues and eigenvectors . . . . . . . . 7

1.7.1 The discontinuity of exchange-correlation potential . . . . . . . . . . . . . . 7

1.7.2 Band gaps and discontinuity of exchange-correlation potential . . . . . . . . 8

1.8 Adiabatic continuation formula, exchange-correlation hole, and LDA . . . . . . . . 9

1.9 The exact exchange-correlation potential from many-body theory . . . . . . . . . . 10

2 Practical DFT calculations 11

2.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Extended systems: unit cells and supercells . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Plane wave basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Another way of looking at pseudopotentials . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Brillouin-Zone sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Finding the electronic ground state 16

3.1 Iteration to self-consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Diagonalization of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Direct minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Moving atoms - complex materials 18

4.1 Optimization of lattice parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Optimization of atomic positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Hellmann-Feynman forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Pulay forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 DFT and Molecular Dynamics 21

5.1 Classical Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Discretization of the equation of motion . . . . . . . . . . . . . . . . . . . . 21

5.1.2 Thermodynamical averages . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.3 Verlet algorithm as unitary discretization of the Liouvillian . . . . . . . . . 22

5.1.4 Canonical ensemble in MD . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.5 Constant-pressure MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Car-Parrinello Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Why Car-Parrinello works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.2 Choice of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Appendix 26

6.1 Functionals and functional derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Iterative diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Fast-Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.5 Essential Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



1 Density Functional Theory

Density Functional Theory (DFT) is a ground-state theory in which the emphasis is on the charge

density as the relevant physical quantity. DFT has proved to be highly successful in describing

structural and electronic properties in a vast class of materials, ranging from simple crystalline

solids to more complex solids (including glasses and liquids) to molecules. Furthermore DFT is

computationally very simple. For these reasons DFT has become a common tool in �rst-principles

calculations aimed at describing { or even predicting { properties of molecular and condensed

matter systems.

1.1 The Hohenberg-Kohn Theorem

Let us consider a system of N interacting (spinless) electrons under an external potential V (r)

(usually the Coulomb potential of the nuclei). If the system has a nondegenerate ground state,

it is obvious that there is only one charge density n(r) of the ground state that corresponds to

a given V (r). In 1964 Hohenberg and Kohn demonstrated the opposite, far less obvious result:

there is only one external potential V (r) which yields a given ground-state charge density n(r).

The demonstration is very simple and uses a reductio ad absurdum argument.

Let us consider two di�erent many-electron Hamiltonians H = T +U+V and H 0 = T +U+V 0,

whose respective ground state wavefunctions are 	 and 	0. T is the kinetic energy, U the electron-

electron interaction, V and V 0 do not di�er simply by a constant: V � V 0 6=const. The charge

density n(r) is de�ned as

n(r) = N

Z
j	(r; r2; r3; :::; rN )j2dr2:::drN (1)

and we assume that n[V ] = n[V 0]. We have the following inequality:

E0 = h	0jH 0j	0i < h	jH 0j	i = h	jH + V 0 � V j	i; (2)

that is,

E0 < E +

Z
(V (r)� V 0(r))n(r)dr: (3)

The inequality is strict because 	 and 	0 are di�erent, being eigenstates of di�erent Hamiltonians.

By reversing the primed and unprimed quantities, one obtains an absurd result.

A subtle point about the existence of the potential corresponding to a given ground state

charge density (the v-representability problem), and various extensions of the Hohenberg and Kohn

theorem, are discussed in the specialized literature.

A straightforward consequence of the �rst Hohenberg and Kohn theorem is that the ground

state energy E is also uniquely determined by the ground-state charge density. In mathematical

terms E is a functional E[n(r)] of n(r). We can write

E[n(r)] = h	jT + U + V j	i = h	jT + U j	i+ h	jV j	i = F [n(r)] +

Z
n(r)V (r)dr (4)

where F [n(r)] is a universal functional of the charge density n(r) (and not of V (r)). For this

functional a variational principle holds: the ground-state energy is minimized by the ground-state

charge density. In this way, DFT exactly reduces the N -body problem to the determination of a

3-dimensional function n(r) which minimizes a functional E[n(r)]. Unfortunately this is of little

use as F [n(r)] is not known.

1.2 The Kohn-Sham equations

One year later, Kohn and Sham (KS) reformulated the problem in a more familiar form and opened

the way to practical applications of DFT. The system of interacting electrons is mapped on to an

auxiliary system of non-interacting electrons having the same ground state charge density n(r).

For a system of non-interacting electrons the ground-state charge density is representable as a sum

over one-electron orbitals (the KS orbitals)  i(r):

n(r) = 2
X
i

j i(r)j2; (5)
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where i runs from 1 to N=2 if we assume double occupancy of all states, and the KS orbitals are

the solutions of the Schr�odinger equation�
�
�h2

2m
r2 + VKS(r)

�
 i(r) = �i i(r) (6)

(m is the electron mass) obeying orthonormality constraints:Z
 �i (r) j(r)dr = Æij : (7)

The existence of a unique potential VKS(r) having n(r) as its ground state charge density is a

consequence of the Hohenberg and Kohn theorem, which holds irrespective of the form of the

electron-electron interaction U .

1.3 Kohn-Sham equations and the variational principle

The problem is now to determine VKS(r) for a given n(r). This problem is solved by considering the

variational property of the energy. For an arbitrary variation of the  i(r), under the orthonormality

constraints of Eq. (7), the variation of E must vanish. This translates into the condition that the

functional derivative (see appendix) with respect to the  i of the constrained functional

E0 = E �
X
ij

�ij

�Z
 �i (r) j(r)dr � Æij

�
; (8)

where �ij are Lagrange multipliers, must vanish:

ÆE0

Æ �i (r)
=

ÆE0

Æ i(r)
= 0: (9)

It is convenient to rewrite the energy functional as follows:

E = Ts[n(r)] +EH [n(r)] +Exc[n(r)] +

Z
n(r)V (r)dr: (10)

The �rst term is the kinetic energy of non-interacting electrons:

Ts[n(r)] = �
�h2

2m
2
X
i

Z
 �i (r)r

2 i(r)dr: (11)

The second term (called the Hartree energy) contains the electrostatic interactions between clouds

of charge:

EH [n(r)] =
e2

2

Z
n(r)n(r0)

jr� r0j
drdr0: (12)

The third term, called the exchange-correlation energy, contains all the remaining terms: our

ignorance is hidden there. The logic behind such procedure is to subtract out easily computable

terms which account for a large fraction of the total energy.

Using
Æn(r)

Æ �i (r
0)
=  i(r)Æ(r � r0) (13)

and the formulae given in the appendix, one �nds

ÆTs

Æ �i (r)
= �

�h2

2m
2
X
i

r2 i(r); (14)

ÆEH

Æ �i (r)
= e2

Z
n(r0)

jr� r0j
dr0 i(r) (15)
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and �nally �
�
�h2

2m
r2 + VH(r) + Vxc[n(r)] + V (r)

�
 i(r) =

X
j

�ij j(r) (16)

where we have introduced a Hartree potential

VH(r) = e2
Z

n(r0)

jr� r0j
dr0 (17)

and an exchange-correlation potential

Vxc[n(r)] =
ÆExc

Æn(r)
: (18)

The Lagrange multiplier �ij are obtained by multiplying both sides of Eq.16 by  �k(r) and inte-

grating:

�ik =

Z
 �k(r)

�
�
�h2

2m
r2 + VH(r) + Vxc[n(r)] + V (r)

�
 i(r)dr: (19)

For an insulator, whose states are either fully occupied or completely empty, it is always possible

to make a subspace rotation in the space of  's (leaving the charge density invariant). We �nally

get the KS equations:

(HKS � �i) i(r) = 0; (20)

where �ij = Æij�j and the operator HKS , called KS Hamiltonian, is de�ned as

HKS = �
�h2

2m
r2 + VH (r) + Vxc(r) + V (r) � �

�h2

2m
r2 + VKS(r) (21)

and is related to the functional derivative of the energy:

ÆE

Æ �i (r)
= HKS i(r): (22)

1.4 DFT, Hartree-Fock, and Slater's exchange

The KS equations are somewhat reminiscent of the Hartree-Fock (HF) equations. Both are derived

from a variational principle: the minimization of the energy functional for the latter, of the energy

for a single Slater determinant wavefunction for the former. Both are self-consistent equations for

one-electron wavefunctions. In the HF equations the exchange term appears in the place of the

exchange-correlation potential of KS equations:�
�
�h2

2m
r2 + VH(r) + V (r)

�
 i(r) + e2

X
j;k

Z
 j(r) 

�
j (r

0)

jr� r0j
 i(r

0)dr0 = �i i(r) (23)

where the sum over j extends only to states with parallel spins. Traditionally, one de�nes the

correlation energy as the di�erence between the HF and the real energy. The name \exchange-

correlation" in DFT re
ects such tradition, although the exchange-correlation energy of DFT is not

exactly the same as HF exchange plus correlation energy: in fact the former contains a contribution

coming from the di�erence between the true many-body kinetic energy h	jT j	i and the kinetic

energy Ts[n(r)] of non-interacting electrons.

The exchange term in the HF equations is a nonlocal operator { one acting on a function �

as (V �)(r) =
R
V (r; r0)�(r0)dr0, and is quite diÆcult to compute. In earlier calculations, done

with primitive computer machinery (or even without any computer machinery), an approximated

form was often used. In the homogeneous electron gas, the average exchange energy and exchange

potential for an electron are

h�xi = �
3

4

e2kF

�
; hvxi = �

3

2

e2kF

�
(24)
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where kF is the Fermi wavevector: kF = (3�2n)1=3. In 1951 Slater proposed to replace the nonlocal

exchange potential with the above form valid for the homogeneous electron gas, with kF evaluated

at the local density. This procedure yields a local (multiplicative) exchange potential

Vx(r) = �
3e2

2�

�
3�2n(r)

�1=3
; (25)

sometimes multiplied by coeÆcient � varying between 2/3 and 1 as an adjustable parameter.

This approximation was rather popular in early solid-state physics but was never regarded as an

especially good one (and it wasn't, actually).

1.5 Local Density Approximation for the exchange-correlation energy

We still don't have a reasonable estimate for the exchange-correlation energy Exc[n(r)]. Kohn and

Sham introduced, as early as 1965, the Local Density Approximation (LDA): they approximated

the functional with a function of the local density n(r) :

Exc[n(r)] =

Z
�(n(r))n(r)dr;

ÆExc

Æn(r)
� �xc(n(r)) =

�
�(n) + n

d�(n)

dn

�
n=n(r)

(26)

and for �(n(r)) used the same dependence on the density as for the homogeneous electron gas (also

known as jellium) for which n(r) is constant.

Even in such simple case the exact form of �(n) is unknown (except at the HF level, see above).

However, approximate forms have been known for a long time, going back to Wigner (1931).

Numerical results from Monte-Carlo calculations (in principle exact) by Ceperley and Alder have

been parameterized by Perdew and Zunger with a simple analytical form:

�xc(n) = �0:4582=rs � 0:1423=(1 + 1:0529
p
rs + 0:3334rs) ; rs � 1

= �0:4582=rs � 0:0480+ 0:0311 ln rs � 0:0116rs + 0:0020rs ln rs ; rs � 1
(27)

where rs is the usual parameter appearing in the theory of metals: rs = (3=4�n)1=3, and atomic

units are used (e2 = �h = m = 1: lengths in Bohr radii, energies in Hartree=27.2 eV). Following HF

tradition, the �rst term is called \exchange" (it has the same form as Slater's local approximation

to exchange), the remaining terms \correlation". We note however that such distinction is to

some extent arbitrary. Actually it has been shown that LDA contains a fair amount of error

compensation between \exchange" and \correlation".

The Perdew-Zunger form for �xc is often used. Several other expressions have appeared in

the literature. All forms yield very similar results in condensed-matter calculations, which is not

surprising, since all parameterizations are very similar in the range of rs applicable for solid-state

phenomena.

1.6 Successes and failures of LDA

LDA has turned out to be much more successful than expected. LDA is computationally much

simpler than HF, yet it yields results of similar or better quality, even in atoms and molecules

{ highly inhomogeneous systems for which an approximation based on the homogeneous electron

gas would hardly look appropriate. Structural and vibrational properties of solids are in general

accurately described: the correct crystal structure is usually found to have the lowest energy, bond

lengths, bulk moduli and phonon frequencies are accurate within a few percent.

LDA also has some well-known drawbacks. The following is a list of just a few of the more

serious:

� self-interaction (the interaction of an electron with the �eld it generates) should cancel exactly

(it does in HF by construction) but it does not in LDA. In �nite systems the presence of

self-interaction is re
ected in an incorrect long-range behavior of the potential felt by an

electron. For an atom, we should have Vxc(r) ! �1=r for r !1, but LDA yields instead a

potential that decays exponentially.
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� LDA tends to badly overestimate (� 20% and more) cohesive energies in molecules and

solids. As a general rule, LDA tends to over-bind. This has some interesting consequences

in systems bound by van der Waals (dispersive) forces. The van der Waals interaction is

absent from LDA by construction: it is due to charge 
uctuations, not to charge overlap.

LDA however overestimates the attractive potential coming from the overlap of the tails of

the charge density, thus yielding apparently good results for the binding energy (but wrong

dependence on the separation distance, of course), for the wrong reason.

� LDA grossly underestimate (� 50%) band gaps in insulators (see below for their exact de�-

nition).

The study of reasons for the good performances and failures of LDA, as well as the search for

better functionals, is still a very active �eld. More accurate gradient-corrected functionals have

been proposed and have found widespread acceptance. Some important results have been achieved

in the last years and will be brie
y described in the next paragraphs.

1.7 On the physical meaning of Kohn-Sham eigenvalues and eigenvec-

tors

One would like very much to be able to calculate one-electron energies having the meaning of

removal (or addition) energies, as for a non interacting system (in the language of many-body

theory, quasiparticle energies). If one electron in the state v is removed from the system, EN �
EN�1 = �v, where EN is the energy of the system with N electrons. If one electron is added to the

system in the state c, EN+1 � EN = �c. The di�erence between the largest addition energy and

the smallest removal energy de�nes the energy band gap: Eg = �c � �v = EN+1 + EN�1 � 2EN .

In solids this is the onset of the continuum of optical transitions, if the gap is direct (if the lowest

empty state and the highest �lled state have the same k vector). From atomic and molecular

physics, the highest occupied and lowest unoccupied states are respectively called HOMO (Highest

Occupied Molecular Orbital) and LUMO (Lowest Unoccupied MO), while addition and removal

energy are respectively called electron aÆnity, A, and ionization potential, I .

In HF the one-electron energies have the meaning of removal (or addition) energies for extended

systems (Koopman's theorem). If the world were described by single Slater determinants, the dif-

ference between the LUMO and HOMO one-electron HF energies would yield the real energy gaps

in solids (neglecting polarization e�ects, i.e. the change in the one-electron states upon addition

or removal of an electron). Since the world is not well described by single Slater determinants, the

band gap is usually quite overestimated in HF (with the true exchange potential, not Slater's local

approximation).

In DFT, the one-electron energies have acquired a rather bad reputation, mostly due to the

failure of KS band gaps (that is: calculated as the di�erence between LUMO and HOMO KS

energies) to reproduce with an acceptable accuracy the true band gap in solids: gaps in DFT are

strongly underestimated. It is not correct however to rule out KS eigenvalues as purely mathemat-

ical quantities without any physical meaning. In particular, it can be demonstrated that in exact

DFT, I = ��HOMO holds. Of course, in �nite systems ionization potentials and electron aÆnities

can be calculated as energy di�erences between the ground state and a state with one electron

added or removed. In extended systems (solids) this is of course not possible.

In recent years the reasons for the "band gap �asco" have been clari�ed. The problem is in

the dependence of the exact energy functional upon the number of electrons and in the inability

of approximate functionals to reproduce it.

1.7.1 The discontinuity of exchange-correlation potential

The basic variational property of the density functional can be expressed by the stationary condi-

tion
Æ

Æn(r)

�
E � �

�Z
n(r)dr�N

��
= 0 (28)
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where � is a Lagrange multiplier and N an integer number. The formulation of DFT can be

extended to noninteger number of particles N + ! (! > 0) via the following de�nition:

E[n(r)] = Ffrac[n(r)] +

Z
V (r)n(r)dr (29)

and

Ffrac[n(r)] = min trfD(T + U)g; D = (1� !)j	N ih	N j+ !j	N+1ih	N+1j (30)

where the minimum must be searched on all density matrices D that yield the prescribed density

n(r). It is easily veri�ed that integration of n(r) over all space yields N + ! electrons. With this

de�nition the variational principle, Eq. 28, is de�ned for any number of electrons and yields the

Euler equations
ÆE

Æn(r)
= � (31)

and that � is really the chemical potential: if we call EN the energy at the ground state for N

electrons, one has

�(N) =
@EN

@N
: (32)

There is an obvious problem if we consider �(N) a continuous function of N for all values of

N . Consider two neutral isolated atoms: in general, they will have two di�erent values for �. As a

consequence the total energy of the two atoms will be lowered by a charge transfer from the atom

at a higher chemical potential to the one at lower chemical potential.

In reality there is no paradox, because the EN curve is not continuous. If we write down

explicitly EN+!, we �nd that both energy and minimizing charge density at fractionary number

of electrons are simply a linear interpolation between the respective values at the end points with

N and N + 1 electrons:

EN+! = (1� !)EN + !EN+1; nN+!(r) = (1� !)nN (r) + !nN+1(r) (33)

with obvious notations. The interesting and far-reaching consequence is that there is a discontinuity

of the chemical potential �(N) and of the functional derivative ÆE=Æn(r) at integer N . This is

an important and essential characteristic of the exact energy functional that simply re
ects the

discontinuity of the energy spectrum.

Coming back to our paradox: for an atom with nuclear charge Z, ionization potential I(Z) and

electron aÆnity A(Z) in the ground state,

�(N) = �I(Z) Z � 1 < N < Z (34)

= �A(Z) Z < N < Z + 1: (35)

For a system of two neutral atoms with nuclear charges X and Y , in which ! electrons are trans-

ferred from the �rst to the second atom:

�(!) = �(0) + I(Y )�A(X) � 1 < ! < 0 (36)

= �(0) + I(X)�A(Y ) 0 < ! < 1: (37)

Since the largest A (3.62 eV, for Cl) is still smaller than the smallest I (3.89 eV, for Cs), the

neutral ground state is stable.

1.7.2 Band gaps and discontinuity of exchange-correlation potential

A consequence of the results of the previous section is that the true band gap of a solid, Eg = I�A,
can be written as

Eg = ��(N � Æ) + �(N + Æ) =
ÆE

Æn(r)

����
N+Æ

�
ÆE

Æn(r)

����
N�Æ

(38)

with Æ ! 0.
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Let us substitute to E[n(r)] the explicit KS form, Eq.10. The Hartree and external potential

terms of the functional will yield no discontinuity and no contribution to Eg . Only the kinetic and

exchange-correlation terms may have a discontinuity and contribute to Eg .

For a non interacting system, only the kinetic term contributes, and the gap is exactly given

by the KS gap:

EKS
g =

ÆTs

Æn(r)

����
N+Æ

�
ÆTs

Æn(r)

����
N�Æ

= �LUMO � �HOMO : (39)

We remark that even the kinetic energy of non interacting electrons, considered as a functional of

the density, must have a discontinuous derivative when crossing an integer number of electrons.

This is one reason why it is so diÆcult to produce explicit functionals of the charge density for Ts
that are able to yield good results: no simple functional form will yield the discontinuity, but this

is needed in order to get the correct energy spectrum.

For the interacting system:

Eg =
ÆTs

Æn(r)

����
N+Æ

�
ÆTs

Æn(r)

����
N�Æ

+
ÆExc

Æn(r)

����
N+Æ

�
ÆExc

Æn(r)

����
N�Æ

= EKS
g +Exc

g : (40)

Note that the kinetic term is evaluated at the same charge density as for the non interacting

system, so it coincides with the KS gap.

In conclusion: the KS gaps are not, by construction, equal to the true gap, because they

are missing a term (Exc
g ) coming from the discontinuity of derivatives of the exchange-correlation

functional. This is absent by construction from any current approximated functional (be it LDA or

gradient-corrected or more complex). There is some evidence that this missing term is responsible

for a large part of the band gap problem, at least in common semiconductors.

1.8 Adiabatic continuation formula, exchange-correlation hole, and LDA

The exchange-correlation energy can be recast into a form that sheds some light on the unexpected

success of LDA and gives a possible path for the production of better functionals. One considers

a system in which the Coulomb interaction between electrons is adiabatically switched on:

U� = �
e2

2

X
i;j

1

jri � rj j
= �U (41)

where � is a parameter that goes from � = 0, for the noninteracting system, to � = 1, for the

true interacting system. The charge density is forced to remain equal to the charge density of the

interacting system:

n�(r) = n(r); (42)

while the potential V� will depend on �. At � = 0 the potential is nothing but the KS potential:

and the energy functional at � = 0 has the simple form:

E0 = Ts[n(r)] +

Z
n(r)VKS(r)dr: (43)

The following step is to write the energy functional for the true interacting system as an integral

of the derivative with respect to �:

E1 = E0 +

Z 1

0

dE�

d�
d�: (44)

The derivative can be simply expressed using the Hellmann-Feynman theorem:

dE�

d�
= h	�j

@H

@�
j	�i (45)

(see section on Hellmann-Feynman forces for the demonstration). Explicitely:

dE�

d�
= h	�jU j	�i+ h	�j

@V�

@�
j	�i: (46)
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By performing the integration, one �nally �nds

Exc =
1

2

Z
fxc(r; r

0)

jr� r0j
n(r)drdr0 (47)

where fxc(r; r
0) is the exchange-correlation hole: the charge missing around a point r due to

exchange e�ects (Pauli antisymmetry) and to Coulomb repulsion. The exchange-correlation hole

obeys the sum rule Z
fxc(r; r

0)dr0 = �1: (48)

The exchange-correlation hole is related to the pair correlation function g(r; r0), giving the proba-

bility to �nd an electron in r0 if there is already one in r. Its exact de�nition is:

fxc(r; r
0) = n(r0)

Z 1

0

(g�(r; r
0)� 1) d� (49)

where g�(r; r
0) is the pair correlation function the system having the electron-electron interaction

multiplied by �, Eq.(41). In homogeneous systems fxc(r; r
0) and g(r; r0) are well known and

studied functions. It has been shown that in inhomogeneous systems LDA does not give a good

approximation for fxc(r; r
0). However LDA yields a very good approximation for its spherical part

fxc(r; s): efxc(r; s) = Z fxc(r; r+ sr̂)
dr̂

4�
: (50)

It is easily shown the Eq.47 depends only on the spherical part of the exchange-correlation hole:

Exc =
1

2

Z efxc(r; s)
s

n(r)drds: (51)

This explains at least partially the good performances of LDA. The above procedure is a good

starting point in the search for better functional, via better modeling of the exchange-correlation

hole.

1.9 The exact exchange-correlation potential from many-body theory

Many-body perturbation theory yields the following exact solution for the many-body problem:�
�
�h2

2m
r2 + V (r) + VH(r) � �i

�
 i(r) +

Z
�(r; r0; �i) i(r

0)dr0 = 0 (52)

where the self-energy �(r; r0; �) is a complex, nonlocal, energy-dependent operator, the  i(r) and

�i have the physical meaning of quasiparticle states and energies. The energies �i are also complex

and their imaginary part is related to the lifetime of the state.

Both DFT and many-body perturbation theory are exact on the ground state (and the latter

also on excited states). This implies

n(r) =

Z
ImGDFT(r; r; �)d� =

Z
ImG(r; r; �)d� (53)

where G(r; r0; �) is the Green's function of the system, GDFT(r; r
0; �) is the same in DFT, and

the integration extends to the energies of occupied states. The Dyson equation must also apply

between G and GDFT:

G = GDFT +GDFT (�� Vxc)G: (54)

By combining the above equations, one �nally gets the following result:

Im

Z
[GDFT (�� Vxc)G]r=r0 = 0: (55)

This equation can be used to deduce the exact exchange-correlation potential. Practical many-

body perturbation theory calculations are very diÆcult but not impossible. Some test calculations

on simple systems have shown that the LDA Vxc is a good approximation to the true Vxc.

10



2 Practical DFT calculations

2.1 Atoms

Atomic DFT calculations are usually performed assuming a spherically averaged charge density.

For closed-shell atoms, such procedure does not introduce any approximation, while for open-shell

atoms, it introduces an error that turns out to be quite small (it can be accounted for using

perturbation theory if a higher accuracy is desired). Under such assumption, an atom can be

described as in elementary Quantum Mechanics by an electronic con�guration 1s22s22p6:::: the

KS equation has spherical symmetry and is separable into a radial equation and an angular part

(whose solutions are the spherical harmonics). The solution of the KS equations for an atom

proceeds as follows. For a given electronic con�guration, and starting from some initial guess of

the KS potential,

� the radial KS equations are solved for those radial orbitals that correspond to occupied states;

� the (spherically averaged) charge density is recalculated;

� a new KS potential is calculated from the charge density, and the procedure is iterated until

self-consistency is reached.

The minimum energy is obtained for the ground state electronic con�guration, that is well known

for all atoms.

The solution of the radial KS equation (step 1 above) is typically done by numerical inte-

gration on a grid, using any of the many well-known techniques that have been developed for

one-dimensional di�erential equations.

The iteration to self-consistency (step 3) is done using the methods explained in Sec. \Iteration

to self-consistency".

One may wonder why we �x the electronic con�guration instead of �lling the one-electron state

starting from the lowest energies and up. For many atoms there is no di�erence between the two

approaches. Atoms with incomplete d and f states however present a problem. The incomplete d

and f shells may have KS energies that are lower than those of outer s and p states; if however we

try to move one more electron from s and p states into the d or f shell, the KS level is "pushed

up" by strong Coulomb repulsion between highly localized electrons. This is a manifestation of

strong correlation that is responsible for a wealth of interesting phenomena (such as magnetism).

Currently available functionals are unable to reproduce this behavior and may produce an incorrect

occupancy of state if this is assigned in "the one-electron way". Fixing the electronic con�guration

solves the problem (unfortunately only in atoms) by imposing the correct occupancy of the highly

localized (correlated) d and f states.

2.2 Molecules

In molecules, KS equations are usually solved by expanding KS orbitals into some suitable basis

set. Methods of solutions based on the discretization of the problem on a 3-d grid have also been

proposed, though. Localized basis sets (atomic-like wavefunctions centered on atoms) are often

used, especially in Quantum Chemistry. The most common basis sets are Linear Combinations

of Atomic Orbitals (LCAO), Gaussian-type Orbitals (GTO), Slater-type Orbitals (STO). These

atomic-like functions are tailored for fast convergence, so that only a few (some tens at most)

functions per atom are needed. An impressive body of technique has been developed during the

years on the use of localized basis sets.

Localized orbitals are quite delicate to use. One problem is the diÆcult to check systematically

for convergence. Another problem is the diÆculty of calculating the Hellmann-Feynman forces

acting on atoms, due to the presence of Pulay forces (see later). In the following we will concentrate

on the opposite approach, that is, choosing extended, atomic-independent Plane Waves (PW) as

basis set.

2.3 Extended systems: unit cells and supercells

The atomic arrangement in perfect crystals is described by a periodically repeated unit cell. For

many interesting physical systems, however, perfect periodicity is absent, but the system is either
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approximately periodic or periodic in one or two directions or periodic except for a small part.

Examples of such systems include surfaces, point defects in crystals, substitutional alloys, het-

erostructures (\superlattices" and quantum wells). In all such cases it is convenient to simulate

the system with a periodically repeated �ctitious supercell. The form and the size of the supercell

depend on the physical system being studied. The study of point defects requires that a defect

does not interact with its periodic replica in order to accurately simulate a truly isolated defect.

For disordered solids, the supercell must be large enough to guarantee a signi�cant sampling of the

con�guration space. For surfaces, one uses a crystal slab alternated with a slab of empty space,

both large enough to ensure that the bulk behavior is recovered inside the crystal slab and that

the surface behavior is una�ected by the presence of the periodic replica of the crystal slab. In the

examples mentioned above, the supercell approach is usually more convenient than the \cluster

approach", that is, simulating an extended system by taking a �nite piece of material (the more

traditional approach in Quantum Chemistry). The reason is the absence of an abrupt termination

in the supercell approach.

Even �nite systems (molecules, clusters) can be studied using supercells. Enough empty space

between the periodic replicas of the �nite system must be left so that the interactions between them

are weak. The use of supercells for the simulation of molecular or completely aperiodic systems

(liquids, amorphous systems) has become quite common in recent years, in connection with �rst-

principles simulations (especially molecular dynamics simulations) using a PW basis set. In fact

there are important computational advantages in the use of PW's that may o�set the disadvantage

of inventing a periodicity where there is none.

The size of the unit cell { the number of atoms and the volume { is very important. To-

gether with the type of atoms it determines the diÆculty of the calculation: large unit cells mean

large calculations. Unfortunately many interesting physical systems are described { exactly or

approximately { by large unit cells.

2.4 Plane wave basis set

In the following we will assume that our system is a crystal with lattice vectors R and reciprocal

lattice vectors G. It is not relevant whether the cell is a real unit cell of a real periodic crystal or

if it is a supercell describing an aperiodic system. The KS wavefunctions are classi�ed by a band

index and a Bloch vector k in the Brillouin Zone (BZ).

A PW basis set is de�ned as

hrjk+Gi =
1

V
ei(k+G)�r;

�h2

2m
jk+Gj2 � Ecut; (56)

where V is the crystal volume, Ecut is a cuto� on the kinetic energy of PW's (from now on, simply

\the cuto�"). PW's have many attractive features: they are simple to use (matrix elements of the

Hamiltonian have a very simple form), orthonormal by construction, unbiased (there is no freedom

in choosing PW's: the basis is �xed by the crystal structure and by the cuto�) and it is very simple

to check for convergence (by increasing the cuto�).

Unfortunately the extended character of PW's makes it very diÆcult to accurately reproduce

localized functions such as the charge density around a nucleus or even worse, the orthogonalization

wiggles of inner (core) states. In order to describe features which vary on a length scale Æ, one needs

Fourier components up to q � 2�=Æ. In a solid, this means � 4�(2�=Æ)3=3
 PW's (where 
 is the

dimension of the BZ). A simple estimate for diamond is instructive. The 1s wavefunction of the

carbon atom has its maximum around 0.3 a.u., so Æ ' 0:1 a.u. is a reasonable value. Diamond has

an fcc lattice (
 = (2�)3=(a30=4)) with lattice parameter a0 = 6:74 a.u., thus yielding � 250; 000

PW's. This is clearly too much for practical use.

2.5 Pseudopotentials

Core states prevent the use of PW's. However they do not contribute in a signi�cant manner

to chemical bonding and to solid-state properties. Only outer (valence) electrons do, while core

electron are \frozen" in their atomic state. This suggests that one can safely ignore changes in core

states (frozen core approximation). However the soundness of this approach was challenged by a

1976 paper by Janak, showing that large variations in the energy of core states can be induced by
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changes in the chemical environment. The controversy was solved in 1980 by Von Barth and Gelatt.

Their argument is brie
y sketched here. Let us introduce the notations nc and nv for the true

selfconsistent core and valence charge; n0c and n
�
v for the frozen-core charge and the corresponding

valence charge. A \frozen-core functional" E[nc; nv] is introduced. The frozen-core error is

Æ = E[n0c ; n
�
v]�E[nc; nv]: (57)

By expanding around nc and nv one �nds

Æ '
Z

ÆE

Ænc
(n0c � nc)dr+

Z
ÆE

Ænv
(n�v � nc)dr+ 2nd order terms. (58)

The important point is that the following stationary conditions hold:

ÆE

Ænc
= �c;

ÆE

Ænv
= �v (59)

where �c and �v are constants, so that the �rst-order terms in the error vanish.

The idea of replacing the full atom with a much simpler pseudoatom with valence electrons

only arises naturally (apparently in a 1934 paper by Fermi for the �rst time). Pseudopotentials

(PP's) have been widely used in solid state physics starting from the 1960's. In earlier approaches

PP's were devised to reproduce some known experimental solid-state or atomic properties such

as energy gaps or ionization potentials. Other types of PP's were obtained from band structure

calculations with the OPW (orthogonalized PW) basis set, by separating the smooth (PW) part

from the orthogonalization part in the wavefunctions.

Modern PP's are called norm-conserving. These are atomic potentials which are devised so as

to mimic the scattering properties of the true atom. For a given reference atomic con�guration, a

norm-conserving PP must ful�ll the following condition:

1) all-electron and pseudo-wavefunctions must have the same energy, and

2) they must be the same beyond a given \core radius" rc, which is usually located around the

outermost maximum of the atomic wavefunction;

3) the pseudo-charge and the true charge contained in the region r < rc must be the same.

This last condition explains the name norm-conserving. There is an historical reason for this:

some earlier PP's violated condition 3 (this was known as the \orthogonality hole" problem). Note

that the de�nition \all-electron", here and in the following, refers to a KS calculation that includes

core electrons, not to a many-electron wavefunctions.

Norm-conserving PP are relatively smooth functions, whose long-range tail goes like �Zve2=r
where Zv is the number of valence electrons. They are nonlocal because it is usually impossible to

mimic the e�ect of orthogonalization to core states on di�erent angular momenta l with a single

function. There is a PP for every l:

bV ps = Vloc(r) +
X
l

Vl(r) bPl = Vloc(r) +
X
lm

Ylm(r)Vl(r)Æ(r � r0)Y �
lm(r

0); (60)

where Vloc(r) ' �Zve2=r for large r and bPl = jlihlj is the projection operator on states of angular

momentum l. They are however seldom used in this form. For computational reasons, they are

recast into a separable form (see appendix). The nonlocality of PP's introduces some additional but

limited complications in the calculation. In particular, one has to do the following generalization:Z
V (r)n(r)dr �!

X
i

h ijbV j ii =X
i

Z
 �i (r)V (r; r

0) i(r
0)drdr0: (61)

Experience has shown that PP's are practically equivalent to the frozen core approximation:

PP and all-electron calculations on the same systems yield almost indistinguishable results (except

for those cases in which core states are not suÆciently frozen). It should be remarked that the use

of PP's is not limited to PW basis sets: PP's can be used in conjunction with localized basis sets

as well.
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2.6 Another way of looking at pseudopotentials

Norm-conserving PP's are still \hard" { that is, they contain a signi�cant amount of Fourier

components with large q { for a number of atoms, such as N, O, F, and the �rst row of transition

metals. For these atoms little is gained in the pseudization, because there are no orthonormality

wiggles that can be removed in the 2p and 3d states, respectively. More complex Ultrasoft PP's

have been devised that are much softer than ordinary norm-conserving PP's, at the price of a

considerable additional complexity.

The heavy formalism of ultrasoft PP's tends to hide the underlying logic (and physics). An

alternative approach, called Projector Augmented Waves (PAW), is much more transparent. More-

over PAW includes as special cases a number of other methods and provides a simple and consistent

way to reconstruct all-electron wavefunctions from pseudo-wavefunctions. These are needed for

reliable calculation of a number of observables, such as NMR chemical shifts and hyper�ne coupling

coeÆcients.

The idea of PAW is to �nd a mapping between the complete wavefunction and the pseudo-

wavefunction via a suitable linear operator. The pseudo-wavefunction must be a smooth object

that can be expanded into PW's.

Let us consider for simplicity the case of a single atom in the system. In a region R centered

around the atom, the mapping is de�ned as

j~�li = (1 + T )j�li (62)

where the functions ~�l are solutions, regular at the origin but not necessarily bound, of the all-

electron atomic KS equation; the functions �l are corresponding pseudo-functions, that are much

smoother in the region R and join smoothly to the ~�l at the border of region R. Outside the region

R, we set T = 0.

In the region R, we assume that we may write a pseudo-wavefunction  for our molecular or

solid-state system as a sum over the atomic pseudo-waves �l:

j i =
X
l

clj�li (63)

By applying the operator (1 + T ) to both sides of the above expansion we �nd

j ~ i =
X
l

clj~�li (64)

where ~ is the all-electron wavefunction. The above result can be recast into the form

j ~ i = j i+
X

cl

�
j~�li � j�li

�
: (65)

It remains to de�ne the cl coeÆcients. Let us introduce the projectors �l with the following

properties:

h�lj�mi = Ælm;
X
l

j�lih�lj = I: (66)

It is easy to verify that cl = h�lj i and that we can write

j ~ i = j i+
X
l

h�lj�i
�
j~�li � j�li

�
(67)

=

"
I +

X
l

�
j~�li � j�li

�
h�lj

#
j i: (68)

The quantity between square brackets is our 1 + T operator. This replaces the pseudo-states �

from the pseudo-wavefunctions around the atoms and replaces them with the all-electron states ~�.

The 1 + T operator is a purely atomic quantity that is obtained from a judicious choice of the ~�l
all-electron atomic states, the corresponding pseudo-states �l, and the projectors �l.

The equations to solve in the PAW method are then obtained by inserting the above form for ~ 

in the energy functional and by �nding its minimum with respect to the variation of the smooth part
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only,  . Rather cumbersome expressions results. An important feature of the resulting equations

is that the charge density is no longer given simply by the square of the orbitals, but it contains

in general an additional (augmentation) term:

n(r) =
X
i

j i(r)j2 +
X
i

X
lm

h ij�liqlm(r)h�mj ii (69)

where

qlm(r) = ~�l(r)~�m(r)� �l(r)�m(r) (70)

(using the completeness relation, Eq.(66)). Conversely the pseudo-wavefunctions are no longer

orthonormal, but obey instead a generalized orthonormality relation:

h ijSj ji = Æij ; S = I +
X
lm

j�liQlmh�mj Qlm =

Z
R

qlm(r)dr: (71)

Ultrasoft PP's can be derived from PAW assuming a pseudized form for qlm(r). Norm-conserving

PP's in the separable form can be derived from PAW if the atomic states ~�l and �l obey the

norm-conservation rule (thus S = 1). The LAPW method can also be recast under this form. The

careful reader will also remark some similarity between the PAW approach and the venerable PP's

based on the OPW method (those with the infamous \orthogonality hole": PAW plugs the hole

by de�ning the charge density in the correct way).

2.7 Brillouin-Zone sampling

In order to calculate the charge density n(r) in a periodic system one has to sum over an in�nite

number of k-points:

n(r) =
X
k

X
i

j k;i(r)j2 (72)

where the index i runs over occupied bands. Assuming periodic (Born-Von K�arm�an) boundary

conditions

 (r+ L1R1) =  (r+ L2R2) =  (r + L3R3) =  (r); (73)

a crystal has L = L1L2L3 allowed k-points (L is also the number of unit cells). In the \thermody-

namic" limit of an in�nite crystal, L ! 1, the discrete sum over k becomes an integral over the

BZ.

Experience shows that this integral can be approximated by a discrete sum over an a�ordable

number of k-points, at least in insulators and semiconductors. When present, symmetry can be

used to further reduce the number of calculations to be performed. Only one k-point is left to

represent each star { the set of k-points that are equivalent by symmetry { with a weight wi that

is proportional to the number of k-points in the star. The in�nite sum over the BZ is replaced by

a discrete sum over a set of points fkig and weights wi:

1

L

X
k

fk(r) �!
X
i

wifki(r): (74)

The resulting sum is then symmetrized to get the charge density.

Suitable sets for BZ sampling in insulators and semiconductors are called \special points". This

name is somewhat misleading: in most cases those sets just form uniform grids in the BZ.

In metals things are more diÆcult because one needs an accurate sampling of the Fermi sur-

face. A suitable extension of DFT to fractionary occupation numbers is needed. The Gaussian

broadening and the tetrahedron techniques, or variations of the above, are generally used.

In supercells, the k-point grid is often limited to the � point (k = 0). A better sampling may

be needed only if it is important to accurately describe the band structure of a subjacent crystal

structure. This is the case of point defects in solids and of surfaces. If, on the contrary, supercells

are used to simulate completely aperiodic or �nite systems, the � point is the good choice: a better

k-point grid would better account for the periodicity of the system, but this is �ctitious anyway.
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3 Finding the electronic ground state

There are two possible ways to �nd the electronic ground state, for �xed atomic positions. The

�rst is to solve self-consistently the KS equations, by diagonalizing the Hamiltonian matrix and

iterating on the charge density (or the potential) until self-consistency is achieved. The second is

to directly minimize the energy functional as a function of the coeÆcients of KS orbitals in the PW

(or other) basis set, under the constraint of orthonormality for KS orbitals. The basic ingredients

are in both cases the same.

3.1 Iteration to self-consistency

In the following I will consider the charge density as the quantity to be determined self-consistently,

but similar considerations apply to the self-consistent potential VKS as well.

We supply an input charge density nin(r) to the KS equations and we get an output charge

density nout(r). This de�nes a functional A:

nout(r) = A[nin(r)]: (75)

At self-consistency,

n(r) = A[n(r)]: (76)

The �rst algorithm that comes to the mind is to simply use nout(r) as the new input charge density:

n
(i+1)
in = n

(i)
out; (77)

where the superscripts indicate the iteration number. Unfortunately there is no guarantee that

this will work, and experience shows that it usually does not. The reason is that the algorithm will

work only if the error on output is smaller than the error on input. If you have an error Ænin(r)

on input, the error on output, close to self-consistency, will be

Ænout(r) '
Z

ÆA

Æn(r)
Ænin(r)dr � JÆnin (78)

which may or may not be smaller than the input error: it depends on the size of the largest

eigenvalue, eJ , of the operator J , which is related to the dielectric response of the system. Usually,

eJ > 1 and the iteration does not converge.

A simple algorithm that generally works, although sometimes slowly, is the \simple mixing".

A new input charge density is generated by mixing the input and output charges:

n
(i+1)
in = (1� �)n

(i)
in + �n

(i)
out (79)

The value of � must be chosen empirically in order to get fast convergence. The error with respect

to self-consistency becomes

Ænout = [(1� �) + �J ] Ænin (80)

and it is easily seen that the iteration converges if � < j1=eJ j. In general, the convergence is

easier for small cells and symmetric systems, more diÆcult for larger cells, low symmetry, cells

elongated along one directions, surfaces. Relatively big values (� = 0:3 � 0:5) can be chosen in

\easy" systems, smaller values are appropriate for cases of diÆcult convergence.

Better results are obtained with more sophisticated algorithms (to name a few: Anderson,

Broyden, Direct Iteration in Inverse Space, DIIS) that use informations collected from several

preceding iterations. Let us sketch the logic of such algorithms. We have a sequence of n
(i)
in

producing n
(i)
out from preceding iterations. We look for the linear combination of input nnewin :

nnewin =
X
l

cln
(l)
in ;

X
l

cl = 1 (81)

that minimises an appropriate norm jjnnewin � nnewout jj. Close to self-consistency,

jjnnewin � nnewout jj ' jj
X
l

cl(n
(l)
in � n

(l)
out)jj (82)

and the coeÆcients cl are determined by imposing that such norm is minimum. Then we mix nnewin

with nnewout =
P

l cln
(l)
out (using simple mixing or whatever algorithm is appropriate).
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3.2 Diagonalization of the Hamiltonian

When the wavefunctions are expanded on a �nite basis set the KS equations take the form of a

secular equation: X
G

0

H(k+G;k+G0) k;i(G
0) = �k;i k;i(G); (83)

where the matrix elements of the Hamiltonian have the form

H(k+G;k+G0) =
�h2

2m
(k+G)2ÆG;G0 +Vscf (G�G0)+Vloc(G�G0)+VNL(k+G;k+G

0): (84)

The term Vscf (G�G0) is the Fourier transform of the the screening potential:

Vscf (G�G0) =
1

V

Z
Vscf (r)e

i(G�G0)rdr: (85)

(V is the volume of the crystal: the integration extends over the entire crystal) and the same

applies to Vloc that comes from the local term in the PP's. The nonlocal contribution VNL comes

from the nonlocal part of the PP's:

VNL(k +G;k+G0) =
1

V

Z
VNL(r; r

0)e�i(k+G)r0ei(k+G
0)r0drdr0: (86)

The problem is reduced in this way to the well-known problem of �nding the lowest eigenvalues

and eigenvectors (only the valence states for insulators, a few more for metals) of an Npw �Npw

Hermitian matrix (whereNpw is the number of PW's). This task can be performed with well-known

bisection-tridiagonalization algorithms, for which very good public-domain computer packages (for

instance, LAPACK) exist. Unfortunately this straightforward procedure has serious limitations.

In fact:

i) the computer time required to diagonalize a Npw �Npw matrix grows as N3
pw;

ii) the matrix must be stored in memory, requiring O(N2
pw) memory.

As a consequence a calculation requiring more than a few hundred PW's becomes exceedingly

time- and memory-consuming. As the number of PW's increases with the size of the unit cell it is

very hard to study systems containing more than a few (say 5-10) atoms. Both limitations can be

pushed much further using iterative techniques (see Appendix).

3.3 Direct minimization

It is not necessary to go through KS equations and self-consistency to �nd the electronic ground

state. The energy functional can be written as a function of the coeÆcients in the basis set of the

KS orbitals and directly minimized, under the usual orthonormality constraints. One has to �nd

the minimum of

E0( k;i(G)) = E( k;i(G)) �
X
ij

�ij

 X
G

 �
k;i(G) k;j(G)� Æij

!
; (87)

with respect to the variables  k;i(G) and the Lagrange multipliers �ij . The problem is made much

simpler by the knowledge of the gradients of the function to be minimized. In fact, remembering

Eq.22, one easily �nds

@E0

@ k;i(G)
= H(G;G0) �

k;i(G
0)�

X
ij

�ij 
�
k;j(G): (88)

Note that, as in iterative diagonalization, the basic ingredients are H products. Note also that

the Hamiltonian depends on the variables  k;i(G) through Vscf and the charge density.

The problem of minimizing a function of many variables whose gradients are known, with

the additional complication due to the presence of constraints, can be solved using appropriate

extensions to textbook algorithms, or specialized algorithms, such as steepest descent (bad) or

conjugate gradient (better) or DIIS (even better).
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4 Moving atoms - complex materials

Until now we have assumed that the atomic positions were known and �xed. This is the case

for simple crystals (silicon for instance), but in more complex crystals (for instance, SiO2) the

equilibrium positions are not �xed by symmetry. In even more complex materials we simply don't

know the equilibrium atomic positions and would like to calculate them.

In the following we assume that ions are classical objects. At zero temperature the equilibrium

atomic positions Ri, i = 1; :::; N (N = number of atoms in the unit cell) are determined by the

minimum of the total energy Etot of the system, that is, the sum of the electronic (DFT) energy

E and of the ion-ion interaction (electrostatic) energy EII . If we consider the electrons in their

ground state for any given con�guration of Ri (collectively indicated by fRg), the total energy

will be a function of the atomic positions:

Etot(fRg) = E(fRg) +EII (fRg): (89)

The procedure to �nd the atomic con�guration yielding the minimum energy is usually called

structural optimization or relaxation.

For an in�nite system we must distinguish between atomic displacements that change the form

and volume of the unit cell (related to elastic modes) and atomic displacements internal to the

unit cell (related to phonon modes). Such distinction does not exist for a �nite system. The

optimization of the lattice and that of atomic positions have to be done separately, or in any case,

using di�erent procedures (Unless we use variable-cell molecular dynamics, a very powerful but

very complex technique).

4.1 Optimization of lattice parameters

The determination of the equilibrium lattice parameters and of the relative stability of di�erent

structures for simple semiconductors was one of the �rst remarkable applications of the LDA PW-

PP approach (around 1980). The total energy is calculated as a function of the volume V of

the unit cell for various di�erent candidate structures. The lowest-energy structure will be the

equilibrium structure at zero temperature and at zero pressure.

The E(V ) curve can in principle be directly calculated. However it is much more convenient

to �t an equation of state to a few calculated points. Empirical equations of state depending on a

few parameters and covering a wide range of volumes around the equilibrium are well known and

widely used in geology and geophysics. The most famous is possibly the Murnaghan equation of

state:

P (V ) =
B

B0

"�
V0

V

�B0

� 1

#
(90)

where the �t parameters are the equilibrium volume V0, the bulk modulus B:

B = �V
@P

@V
= V

@2E

@V 2
(91)

and its derivative with respect to the pressure, B0 = dB=dP , an adimensional quantity ranging from

3 to 10 for almost all solids. The Murnaghan E(V ) is obtained by integrating the former expression.

All these quantities are directly comparable to experimental results (at zero temperature).

The reason for this �t procedure is that the straightforward calculation of E(V ) su�ers from

important errors. In particular, when using PW's with a given energy cuto�, the number of PW's

depends on V . As most calculations are done far from convergence, this will cause large oscillations

in the calculated E(V ) (this is reminiscent of the \Pulay force" problem). Experience show that

the �t to an equation of state e�ectively smoothes the oscillations and yields very good results

even if the cuto� of PW's is low.

The statement \most calculations are done far from convergence" is not as alarming as it may

seem: in fact the slow convergence is due to the region of charge close to the atomic cores. This

is an essentially atomic-like charge that changes little from one structure to another. If we are

interested in comparing di�erent structures of the same materials, the relative energy di�erences

will converge with the cuto� well before the absolute energy values. Of course, one has to check

carefully the relative convergence with respect to the BZ sampling as well.
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It is also possible to �nd the pressure at which the crystal makes a transition from one structure

to the other. This is achieved by connecting with a common tangent two E(V ) curves for two

di�erent structures. It is easy to show that this construction determines the pressure at which the

enthalpies of the two phases are equal: E1+PV1 = E2+PV2. The minimum enthalpy state is the

thermodynamic condition of stability at zero temperature and at constant pressure. The crossing

of the enthalpies of the two phases at equal P signals the possibility of a �rst-order structural

transition.

Of course this approach relies on some knowledge or intuition of reasonable candidates crystal

structures. Generally the results are in good to very good agreement with experiments.

In more complex crystals: noncubic or with atomic positions in the unit cell that are not �xed

by symmetry, the equilibrium is determined not only by the volume of the unit cell but also by

other lattice parameters (for instance, c=a for tetragonal crystals) and by atomic positions in the

unit cell. The approach sketched above is still valid, provided one determines the equilibrium

atomic positions (see next section) and the equilibrium lattice parameters for a given volume. For

the latter the calculation of stresses may be useful:

��� =
1

V

@E

���
(92)

where ��� is the strain: a homogeneous deformation of all coordinates, sending r into r0 = (1+ �)r

(where � is a matrix). The stresses can be calculated in DFT. At equilibrium and at zero pressure,

the stresses are zero. The pressure is related to the stress by P = �Tr�=3.

4.2 Optimization of atomic positions

The problem of �nding minimum of the total energy as a function of atomic positions, having

�xed the unit cell, is much easier if one can calculate the gradients of the energy with respect to

the variables (the atomic positions in the unit cell). This can be done quite easily, at least for a

PW basis set, as shown in the next section. We are left with the textbook problem of �nding the

minimum of a 3N�dimensional problem. Several well-known and well-studied algorithms exist:

conjugate gradient, quasi-Newton methods, DIIS. In the appendix the conjugate gradient algorithm

is examined

The two following points however must be remarked. The �rst is that, if we start from a system

having a given symmetry, the forces will not break such symmetry. This may be both an advantage

and a disadvantage. The second is that algorithms based on forces will very likely bring the system

to the closer local minimum (a zero gradient point), rather than to the absolute minimum (the

lowest-energy minimum). In situations in which there are many local minima separated by energy

barriers this kind of approach can easily fail to �nd the global minimum. Unfortunately this is a

typical situation: for instance, clusters of atoms are known to have a large number of local minima.

4.3 Hellmann-Feynman forces

Hellmann-Feynman forces are the derivative of the total energy with respect to atomic positionsRi.

For many-body Hamiltonians and wavefunctions, only terms containing explicit derivatives in the

Hamiltonian contribute (Hellmann-Feynman theorem). The terms containing implicit derivatives

through the wavefunctions, that we indicate with eFi, vanish:
Fi = �

d

dRi

h	jH j	i = �h	j
@H

@Ri

j	i � eFi (93)

with eFi = h
d	

dRi

jH j	i+ h	jH j
d	

dRi

i = Eh
d	

dRi

j	i+Eh	j
d	

dRi

i = E
d

dRi

h	j	i: (94)

The last term vanish because it is the derivative of a constant quantity. Note that partial derivative

are used to indicate explicit derivation, otherwise the total derivative is used.

In DFT the same applies, thanks to the variational character of the energy. Let us write the

force as

Fi = �
dE

dRi

= �
Z
n(r)

@V (r)

@Ri

dr�
@EII

@Ri

� eFi (95)
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where the �rst term comes from explicit derivation of the energy functional, EII is the ion-ion

(classical) interaction energy, and the eFi contains the implicit derivation through KS orbitals:

eFi =X
k

Z �
d �k(r)

dRi

ÆE

Æ �k(r)
+
d k(r)

dRi

ÆE

Æ k(r)

�
dr: (96)

Using the expression for the functional derivative of the energy functional, Eq.22, and the identity

0 =
d

dRi

Z
n(r)dr =

X
k

�Z
d �k(r)

dRi

 k(r)dr +

Z
 �k(r)

d k(r)

dRi

dr

�
; (97)

the term eFi can be recast as

eFi =X
k

Z �
d �k(r)

dRi

(H � �k) k(r) +
d k(r)

dRi

(H � �k) 
�
k(r)

�
dr: (98)

This term vanishes on the ground state. Finally, one �nds that, in perfect analogy to the many-

body case, the forces acting on atoms are the matrix element on the ground state of the gradient

of the external potential plus an ion-ion term:

Fi = �
Z
n(r)

@V (r)

@Ri

dr�
@EII

@Ri

: (99)

4.4 Pulay forces

Unfortunately the term eFi in Eq.98 vanishes only if we have ground state charge density and

wavefunctions at perfect convergence. In the real world, this is never the case. In particular,

the wavefunctions are expanded on a �nite basis set that is never complete. This may produce a

nonzero value of eFi, called Pulay force.

Let us write the expansion of wavefunctions into a basis set, taken to be orthonormal for

simplicity:

 k(r) =
X
n

c(k)n �n(r): (100)

This will yield a secular equationX
m

(Hnm � �i)c
(k)
m = 0; Hnm =

Z
��n(r)H�m(r)dr: (101)

By inserting the expansion of the KS orbitals into Eq.98 one �nds

eFi =X
k

X
mn

@c
(k)
n

@Ri

(Hnm � �k)c
(k)
m +

X
mn

c(k)n c(k)m

Z
@��n(r)

@Ri

(H � �k)�m(r)dr + c.c. (102)

The �rst term vanish exactly even if the basis set is not complete (see Eq.101). The second term

instead vanishes only if i) if the basis set is complete, or ii) if @��n(r)=@Ri has no component

outside the subspace de�ned by the �n(r), or iii) if the basis set does not depend explicitly on the

atomic positions. The latter is the case of PW's. Pulay forces do not arise because the basis set is

incomplete, but because it is \incomplete in a di�erent way" when atoms are moved. Using PW

one has also an incomplete basis set, but it is \equally incomplete" for all atomic positions in the

unit cell.

In practical calculations with localized basis sets, Pulay forces must be taken into account,

otherwise the error on the forces is quite large. If one wants to minimize the energy, or to do

molecular dynamics simulations, it is crucial that the forces are the derivative of the energy within

numerical accuracy. Although much progress has been done in the last years towards reliable

calculation of forces with localized basis sets, PW's are still much more used than localized basis

sets for all applications in which forces are important.

It should be kept in mind that the above results holds at perfect electronic self-consistency (or

at the perfect minimum of the energy functional, in the case of direct minimization). Practical

calculations of forces will always contain a small error. We will come back to this point later.
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5 DFT and Molecular Dynamics

We can safely assume that ions behave as classical particles (a very good approximation, ex-

cept in some cases for Hydrogen). Also, we can assume that the electrons are always on the

Born-Oppenheimer (BO) surface, that is, in the ground state corresponding to their instantaneous

positions. Under these assumptions the dynamical behavior of ions can be described by a classical

Lagrangian

L =
1

2

X
i

Mi
_R2
i �Etot(fRg) (103)

where Mi are the mass of ions. The corresponding equations of motion:

d

dt

@L

@ _Ri

�
@L

@Ri

= 0; Pi =
@L

@ _Ri

(104)

are nothing but Newton's equations.

It is tempting to use Eq.103 as the basis for a molecular dynamics (MD) study. In classical

MD, the forces are generated by an interatomic potential (often a sum of two-body terms like

Lennard-Jones potentials) and the Newton equations are discretized and numerically solved. The

discrete interval of time is called time step. A sequence of atomic coordinates and velocities is

generated starting from a suitable initial set of coordinates and velocities. The sequence can be

used to calculate thermodynamical averages. Straightforward MD will sample the microcanonical

ensemble: constant energy at �xed volume, but it is possible to build a dynamics at constant

temperature (canonical ensemble) using a Nos�e thermostat that simulates a thermal bath, or at

constant pressure, by adding a �ctitious dynamics on the volume, and even more complex cases.

MD can also be used to �nd the global minima using the simulated annealing technique. The

con�guration space is sampled at equilibrium, then the kinetic energy is gradually removed from

the systems that has the possibility (but is not guaranteed to do so) to reach the global minimum.

Such procedure is sometimes the only practical way to �nd the global minimum for especially hard

problems. In mathematical terms, \easy" problems are exactly solvable by computer algorithms

in polynomial time, that is, in a number of steps that is a polynomial function of the dimension of

the problem; \hard" problems are solved in exponential time. A problem is NP (nondeterministic

polynomial) if its solution (if one exists) can be guessed and veri�ed in polynomial time. This is

the kind of problems for which the simulated annealing has been devised. The determination of

the structure in clusters is believed to be a NP-hard problem.

5.1 Classical Molecular Dynamics

Let us consider the most basic MD : a purely mechanical system of N atoms, enclosed in a volume

V (usually with periodical boundary conditions, PBC, for a condensed-matter system), having

mechanical energy E = T +Ep, where T = 1
2

P
iMi

_R2
i is the kinetic energy of ions, Ep = Ep(fRg)

is the interatomic potential energy. This is known as the NV E, or microcanonical, ensemble.

5.1.1 Discretization of the equation of motion

The numerical solution (integration) of the equations of motions is generally performed using the

Verlet algorithm. This is obtained from the following basic and very simple equations :

Ri(t+ Æt) = Ri(t) + ÆtVi(t) +
Æt2

2Mi

fi(t) +
Æt3

6
bi(t) +O(Æt4) (105)

Ri(t� Æt) = Ri(t)� ÆtVi(t) +
Æt2

2Mi

fi(t)�
Æt3

6
bi(t) +O(Æt4) (106)

where Vi = _Ri are velocities, fi forces acting on ion i. By summing and subtracting Eqs. (105)

and (106) we get the Verlet algorithm:

Ri(t+ Æt) = 2Ri(t)�Ri(t� Æt) +
Æt2

Mi

fi(t) +O(Æt4) (107)

Vi(t) =
1

2Æt
[Ri(t+ Æt)�Ri(t� Æt)] +O(Æt3): (108)
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The velocities are one step behind the positions, but they are not used to update the positions.

It is possible to recast the Verlet algorithm into an equivalent form (one giving exactly the same

trajectories) in which both velocities and positions are updated in the same step. By combining

Eq.(105) with Eq.(106) displaced in time by +Æt, one �nds

Vi(t+ Æt) = Vi(t) +
Æt

2Mi

[fi(t) + fi(t+ Æt)] (109)

Ri(t+ Æt) = Ri(t) + ÆtVi(t) +
Æt2

2Mi

fi(t): (110)

Note that the update of velocities requires the forces for the new positions. This algorithm is

known as Velocity Verlet. Its equivalence to the Verlet algorithm may not seem evident, but it can

be proved quite simply.

In spite of his simplicity, the Verlet algorithm, in any incarnation, is eÆcient and numerically

stable. In particular, it yields trajectories that conserve to a very good degree of accuracy the energy

E. A small loss of energy conservation, due both to numerical errors and to the discretization,

is unavoidable, but a systematic drift of the energy is not acceptable. In this respect Verlet is

superior to apparently better (i.e. higher-order) schemes. In one of the following sections we will

see one reason why this happen.

5.1.2 Thermodynamical averages

In the following we will use the phase space canonical variables, collectively indicated as R;P,

instead of coordinates and velocities. From a practical point of view, the calculation of thermody-

namical averages in classical MD is an average over many time steps:

AT =
1

T

Z T

0

A(R(t);P(t))dt '
1

M

MX
n=1

A(tn); tn = nÆt; tM =MÆt = T: (111)

For an ergodic system (that is, one whose trajectories in a suÆciently long time pass arbitrary

close to any point in the phase space), it is believed that:

lim
T!1

AT ! hAi (112)

where hi is the average over the corresponding ensemble:

hAi =
Z
�(R;P)A(R;P)dRdP (113)

where � is the probability of a microscopic state. In NV E MD the microcanonical ensemble is

sampled:

�NVE(R;P) =
g(N)



Æ(H �E) (114)

where H is the Hamiltonian corresponding to the Lagrangian of Eq.(103), E is the mechanical

energy (including kinetic energy of ions) g(N) = (h3NN !)�1 for N indistinguishable atoms, and 
,

related to the entropy S by the Boltzmann relation S = kB log
, is the total number of microscopic

states:


 = g(N)

Z
dRdPÆ(H �E): (115)

The time step must be as big as possible in order to sample as much phase space as possible, but

at the same time it must be small enough to allow to follow the motion the ions with little loss of

accuracy (which usually appears as a drift in the energy). Typically Æt � 0:01� 0:1Ætmax, where

Ætmax is the period of the fastest phonon mode: Ætmax = 1=!max.

5.1.3 Verlet algorithm as unitary discretization of the Liouvillian

Let us consider an observable A = A(R;P; t). Its time evolution can be written as

dA

dt
=
X
i

�
_Ri
@A

@Ri

+ _Pi
@A

@Pi

+
@A

@t

�
= iLA+

@A

@t
(116)
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where the operator L is called the Liouvillian. Assuming that A = A(R;P) does not depend

explicitly on the time, the Liouvillian determines entirely the time evolution of A: formally,

A(t) = eiLtA(t = 0) = U(t)A(t = 0): (117)

It can be shown that L is an Hermitian operator and thus U is a unitary operator (as it should

be: time-reversal symmetry must hold). We can write L as

iL =
X
i

�
_Ri

@

@Ri

+ _Pi
@

@Pi

�
=
X
i

�
_Ri

@

@Ri

+ fi
@

@Pi

�
(118)

and �nally as a sum of two terms, one acting on coordinates and one on momenta: iL = iLp+ iLr,
where

iLp =
X
i

fi
@

@Pi

; iLr =
X
i

_Ri
@

@Ri

: (119)

Until now, we have just recast the classical equation of motion into an elegant but not especially

useful formalism. Let us discretize now the time evolution operator, by dividing t into N small

intervals Æt = t=N , and apply the Trotter approximation:

ei(Lp+Lr)t =
h
ei(Lp+Lr)Æt

iN
=
h
eiLpÆt=2eiLrÆteiLpÆt=2 +O(Æt3)

iN
: (120)

Remember that Lp and Lr are operators: the Trotter approximation is not trivial. Let us apply

the operator between square brackets to a point (Ri(t);Pi(t)) in phase space at time t. We will

use the known result

ea@=@xf(x) = f(x+ a) (121)

if a does not depend on x. Since Lp and Lr are sums of terms acting on each particle separately,

we can consider their action on each particle independently.

eiLpÆt=2 (Ri;Pi) =

�
Ri;Pi +

Æt

2
fi(R)

�
� (R0

i;P
0
i) (122)

eiLrÆt (R0
i;P

0
i) =

�
R0
i +

Æt

Mi

P0i;P
0
i

�
(123)

=

�
Ri +

Æt

Mi

Pi +
Æt2

2m
fi(Ri);Pi +

Æt

2
fi(R)

�
� (R00

i ;P
00
i ) (124)

eiLpÆt=2 (R00
i ;P

00
i ) =

�
R00
i ;P

00
i +

Æt

2
fi(R

00)

�
(125)

=

�
Ri +

Æt

Mi

Pi +
Æt2

2Mi

fi(R);Pi +
Æt

2
[fi(R) + fi(R

00)]

�
(126)

Noting that fi(R) = fi(t), fi(R
00) = fi(t+ Æt), the last expression is nothing but the velocity Verlet

algorithm for (Ri(t+ Æt);Pi(t+ Æt)) .

In conclusion: the Verlet algorithm may be derived by a discretization of the time evolution

operator that conserves unitarity. Such property is crucial for any well-behaved algorithm one can

think of.

5.1.4 Canonical ensemble in MD

We are often interested in systems in thermal equilibrium with a thermal bath at temperature T :

the NV T or canonical ensemble, for which

�NV T (R;P) =
g(N)

Z
e�H(R;P)=kBT (127)

where Z is the partition function:

Z = g(N)

Z
dRdPe�H(R;P)=kBT : (128)
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Integration over P gives for the partition function of N identical atoms:

Z = Zr=(N !�3N ) (129)

where � is the thermal wavelength:

� =
h

p
2�MkbT

(130)

and Zr is the con�gurational partition function:

Zr =

Z
dR1:::

Z
dRne

�Ep(R)=kBT : (131)

In the canonical ensemble, the temperature is related to the expectation value of the kinetic energy:

h
NX
i=1

P2
i

2Mi

iNV T =
3

2
NkBT: (132)

The canonical ensemble can be simulated using what is called Nos�e-Hoover thermostat: an addi-

tional �ctitious degree of freedom produces a dynamical friction force having the e�ect of heating

ions when the kinetic energy is lower than the desired value, cooling them in the opposite case.

Speci�cally, the equations of motion become

�Ri =
fi

Mi

� _� _Ri (133)

�� =
1

Q

"
NX
i=1

Mi
_R2
i � 3NkbT

#
(134)

where Q plays the role of \thermal mass". The constant of motion for this system is

eH = H +
Q

2
_�2 + 3NkbT� (135)

but eH does not generate the dynamics (the dynamics is non-canonical). It can be shown that such

dynamics samples the canonical ensemble.

Although all thermodynamical properties could in principle be determined from the free energy

F , it is not possible to calculate directly F from a MD simulation. The free energy (like the

partition function and the entropy) cannot be simply expressed as a thermodynamical average

(like the energy). Specialized algorithms are needed for free energy calculation.

5.1.5 Constant-pressure MD

Very often we are interested in simulating systems kept at a given pressure P rather that occupying

a �xed volume V . Constant-pressure MD can be obtained by adding the volume V or, in a more

general case, the cell parameters, to the dynamical variables. In the simple case of a liquid, one

de�nes a Lagrangian:

eL =
1

2

NX
i=1

Mi

�
V 1=3 _�i

�2
�Ep(fV 1=3�g) +

1

2
W _V 2 � PV (136)

where �i = Ri=V
1=3 are scaled variables, P is the desired external pressure, and W is a (�ctitious)

mass for V .

For a solid, we may be interested in knowing the equilibrium unit cell volume and form under a

given stress state (typically a constant external hydrostatic pressure) rather than working at �xed

cell and calculating the corresponding stress. In this case one introduces a matrix h, formed by the

unit cell vectors ai: h = (a1; a2; a3), and de�nes scaled variables Si as Si = h�1Ri. The extended

lagrangian becomes

eL =
1

2

NX
i=1

Mi
_SiG _Si �Ep(fhSg) +

1

2
WTr _ht _h� PV (137)

where G = hth is the metric tensor. The interest of variable-cell dynamics for solid-state systems

reside in the possibility to simulate structurale phase transitions (under applied pressure but also

as a function of temperature).
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5.2 Car-Parrinello Molecular Dynamics

Implementations of MD using �rst-principle interatomic potential calculated from DFT, as in

Eq.(103), are widely used. All the MD machinery developed for classical interatomic potentials

can be used. However these implementation su�er from a serious drawback. MD is quite sensitive

to the quality of forces. If the forces are not the derivatives of the energy with high accuracy, the

MD simulation will have problems, appearing as a drift of quantities that should be conserved (like

e.g. the energy) from their values. The error on DFT forces is linear in the selfconsistency error

of the charge density (while for the DFT energy it is quadratic). As a consequence, a very good

and expensive convergence to self-consistency is required at every time step.

In 1985 Car and Parrinello (CP) proposed a di�erent approach. They introduced a Lagrangian

for both electronic and ionic degrees of freedom:

L =
�

2

X
k

Z
drj _ k(r)j

2
+
1

2

X
i

Mi
_R2
i �Etot(fRg; f g) +

X
k;l

�kl

�Z
 �k(r) l(r)dr � Ækl

�
(138)

which generates the following set of equations of motion:

� � k = H k �
X
l

�kl l; Mi
�Ri = �

@Etot

@Ri

(139)

where � is a �ctitious electronic mass, and the Lagrange multipliers �kl enforce orthonormality

constraints.

The electronic degrees of freedom are, in the typical implementation, expansion coeÆcients

of KS orbitals into PW. The forces acting on them at each time step are determined by the KS

Hamiltonian calculated from the current values of  k and of Ri. The sum over orbitals for an

insulating system of n electrons includes n=2 states, assuming that spin polarization is neglected

(every orbital is occupied by two electrons). Most CP calculations are done for aperiodic systems

or for systems having a large unit cell (or supercell), so that typically only the � point (q = 0)

is used to sample the Brillouin Zone. Note that the entire Hamiltonian operator is not required:

only products H i are.

The forces acting on ions have the Hellmann-Feynman form:

@Etot

@Ri

=
X
k

h kj
@V

@Ri

j ki (140)

where V is the electron-ion interaction (pseudo-)potential. Note however that Hellmann-Feynman

theorem holds only on the exact ground state. The relation of Car-Parrinello forces to Hellmann-

Feynman forces is explained in the next section.

Orthonormality constraints are exactly imposed to the  at each time step, using an iterative

procedure that exploits the fact that the loss of orthonormality at each time step is small.

The simulation starts by bringing the electrons to the BO surface (that is, to the ground state)

at �xed ions and proceeds, using classical MD technology, on both electronic and ionic degrees

of freedom. With appropriate values of � and Æt, the electrons always remain close to the BO

surface, while the ions follow a trajectory that is close to the trajectory they would follow in the

BO approximation.

The Car-Parrinello dynamics has turned out to be very successful especially in the study of

low-symmetry situations: surfaces, clusters, liquids, disordered materials, and for the study of

chemical reactions.

5.2.1 Why Car-Parrinello works

The reasons why the Car-Parrinello dynamics works so e�ectively are quite subtle. The dynamics

for the electrons is purely classical (and �ctitious: it has nothing to do with real electron dynamics).

As a consequence the energy would tend to equipartition between electronic and ionic degrees of

freedom, causing an energy transfer from ionic to electronic degrees of freedom. This does not

happen (and must not happen, otherwise the electrons will leave the BO surface) even on long

simulation times. If we analyze the dynamics in terms of oscillators, we �nd that the typical
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frequencies associated to the �ctitious electron dynamics are given by !el �
p
(�i � �j)=�, if there

is a gap in the electronic spectrum. For ions, the oscillator frequencies are the typical phonon

frequencies. It turns out that, for reasonable values of the gap and of the �ctitious electron

mass �, the maximum phonon frequency is much smaller than the minimum electron frequency:

!phmax << !elmin. The energy transfer from ionic to electronic degrees of freedom is as a consequence

very small even on long times.

This situation generates a fast electron dynamics that keeps the electrons close to the BO

surface and averages out the error on the forces, so that the much slower ionic dynamics turns

out to be correct (that is, very close to the BO dynamics one would obtain from highly converged

selfconsistency). A detailed explanation is contained in a 1991 paper by Pastore, Smargiassi, and

Buda.

If there is no gap in the electronic spectrum, or if the gap is too small, the above picture breaks

down. It may be needed to add separate thermostats to ionic and electronic degrees of freedom in

order to prevent the 
ow of energy from the former to the latter.

5.2.2 Choice of the parameters

The choice of the electronic mass � must strike a compromise between conservation of adiabaticity

(favoured by small values of �, see above) and maximum admissible time step (that is limited by

the maximum electronic frequency, so that the heaviest �, the smaller !elmax, the larger Ætmax.

Typically � � 200 amu (1 amu=1 electron mass). For large gap systems, such as SiO2 or H2O, in

which adiabaticity problems are minor, � may be increased up to � 500-700 amu and even more.

Such values of � correspond to a typical timestep of � 0:1� 0:2fs.

In order to increase the time step, it is customary to introduce the so-called mass precondition-

ing. In a PW basis set, the time step is limited by high-frequency components with the largest G

vector. These components are dominated by the kinetic energy �h2G2=2�. Since electronic masses

are �ctitious, it is advantageous to introduce a mass that for high-frequency components goes like

�(G) ' �(1 +G2). The corresponding equations of motions are only slightly more complex.

It should be noticed, however, that too heavy electron masses adversely a�ect the quality of

simulation via an \electron drag" e�ect. The electron motion follow the ionic motion with some

delay, thus introducing a drag force that appears as if the ions were heavier than their masses.

This \mass renormalization" must be taken into account when extracting vibrational frequencies

from MD runs. In some cases, this e�ect can introduce a nonnegligible deviation from the true

ionic dynamics.

6 Appendix

6.1 Functionals and functional derivatives

The concept of functional is the generalization of the concept of function: function associates a

value with another value, while a functional associates a value with a given function. The functional

dependence is indicated by square brackets, like in E[n(r)].

Functional derivatives ÆF [f(x)]=Æf(y) are de�ned implicitly through the expression

ÆF =

Z �
ÆF [f(x)]

Æf(y)

�
Æf(y)dy (141)

where ÆF is the �rst-order variation of F [f(x)] produced by an arbitrary variation Æf(y) of f(y).

Functional derivatives obeys some simple rules similar to those for normal derivatives. If f(x) is a

function,
Æf(x)

Æf(y)
= Æ(x� y): (142)

If a functional is the product of two functionals F [f(x)] and G[f(x)],

ÆF [f(x)]G[f(x)]

Æf(y)
=
ÆF [f(x)]

Æf(y)
G[f(x)] + F [f(x)]

ÆG[f(x)]

Æf(y)
: (143)
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The following \chain relation" applies:

ÆF [f(g(x))]

Æg(z)
=

Z
ÆF

Æf(y)

Æf(y)

Æg(z)
dy: (144)

Note that the functional dependence is sometimes removed in functional derivatives in order to

simplify the notations.

6.2 Iterative diagonalization

Iterative diagonalization can be used whenever

i) the number of states to be calculated is much smaller than the dimension of the basis set,

and

ii) a reasonable and economical estimate of the inverse operator H�1 is available.

Both conditions are satis�ed in practical calculation in a PW basis set: the number of PW's is

usually much larger than the number of bands, and the Hamiltonian matrix is dominated by the

kinetic energy at large G ( the Hamiltonian is diagonally dominant).

Iterative methods are based on a repeated re�nement of a trial solution, which is stopped

when satisfactory convergence is achieved. The number of iterative steps cannot be predicted in

advance. It depends heavily on the structure of the matrix, on the type of re�nement used, and on

the starting point. A well-known and widely used algorithm is due to Davidson. In this method,

a set of correction vectors jÆ ii to the M trial eigenvectors j ii are generated as follows:

jÆ ii =
1

D � �i
(H � �i)j ii (145)

where the �i = h ijH j ii are the trial eigenvalues. The jÆ ii's are orthogonalized and the Hamil-

tonian is diagonalized (with conventional techniques) in the subspace spanned by the trial and

correction vectors. A new set of trial eigenvectors is obtained and the procedure is iterated until

convergence is achieved. A good set of starting trial vectors is supplied by the eigenvectors at the

preceding iteration of the potential.

An important point is the following. The Hamiltonian matrix is never explicitly required

excepted for its diagonal part. Only H i products are required, which can be calculated in a very

convenient way by applying the dual-space technique. In fact the kinetic energy is diagonal in

G-space, whereas the local potential term is diagonal in real space. Using FFT's (see below) one

can go quickly back and forth from real to reciprocal space and perform the products where it is

more convenient. There is still a nonlocal term which appears to require the storage of the matrix.

The trick is to write VNL in a separable form:

VNL(k+G;k+G0) =

NatX
�=1

nX
j=1

f
�
j (k+G)g

�
j (k+G0); (146)

where n is a small number and Nat is the number of atoms in the unit cell. This allows us to

perform the products by storing only the f and g vectors.

6.3 Fast-Fourier Transform

An important computational advantage of PW's is the existence of very fast algorithms (known as

the Fast Fourier-Transform, FFT) to perform the discrete Fourier transforms. This allows simple

and fast transformation from reciprocal to real space and vice versa. The basic one-dimensional

FFT executes the following transformation:

fi =

N�1X
j=0

gje
2�ij=N ; i = 0; :::; N � 1 ; (147)

and its inverse

gi =
1

N

N�1X
j=0

fje
�2�ij=N : (148)
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The transformation is usually performed \in place", that is the result is overwritten on the input

vector. This takes O(N logN) operations instead of O(N2) of a straightforward summation. In

three dimensions the discrete Fourier transform maps a function ef(gi) in reciprocal space into a

function f(ri) in the unit cell (and vice versa):

gi = i1G1 + i2G2 + i3G3; ri =
j1

N1

R1 +
j2

N2

R2 +
j3

N3

R3 (149)

where R1;R2;R3 (G1;G2;G3) are the three fundamental translations that generate the real-

space (reciprocal) lattice, i1 = �N1=2; :::; N1=2, and so on. N1; N2; N3 must be suÆciently large

to include all available Fourier components; the more Fourier components, the larger the grid in

G-space and the �ner the grid in R-space. It is easily veri�ed that this 3-d FT can be done in a

very fast way by performing 3 inter-nested 1-d FFT.

6.4 Conjugate Gradient

In the following let us consider a function f(x) of the variables x � (xi; :::; xN ) and its gradients

g(x) = �rxif(x).

The �rst obvious minimization algorithm that comes to mind is steepest descent (SD). This

consists in minimizing f(x) along the direction g(x). Once the minimum along such direction is

reached, the gradient is recalculated, a new minimum is sought along the new direction of the

gradient, and so on.

SD is a prototypical direction set method: the gradient is eliminated one component at the time

along a set of directions. In SD every direction is orthogonal to the previous one (by construction).

SD is not bad far from convergence, but it becomes very bad very quickly. A reason for bad

convergence is that the set of directions in SD is not optimal. Let us consider such aspect in more

detail in the following.

The function in the region not far from the minimum is approximately quadratic:

f(x) '
1

2
tx �A � x� b � x+ f0; g(x) = �A � x+ b (150)

where A is a matrix, b is a vector (not necessarily known).

An optimal set of directions should ensure that when we search for a minimum along the new

direction, we do not lose what we have gained in the preceding step. Let us assume that at step

n we reached the minimum along line hn. This implies: g(xn) � hn = 0. We move from xn along

direction hn+1. The gradient change Æg is proportional to A �hn+1. If we impose that this change
has no component along all previous minimization directions hn, we get the condition

hn �A � hm = 0 (151)

that de�nes conjugate directions. The simpler conjugate gradient (CG) algorithm is as follows:

1. start by minimizing along h0 = g0 = �rf(x0). If the function is quadratic, the minimum

can be found analytically: x1 = x0 + �0h0, where �0 = �h0 � g0=h0 �A � h0.

2. �nd the next direction h1 = g1 + 
1h0 and impose that it is conjugate to the preceding one,

Eq.151. One �nds 
1 = g1 � g1=g0 � g0.

3. iterate the procedure until the desired convergence. The sequence of gradients gn and of

conjugate gradients hn is found to obey gn � gm = 0, gn � hm = 0, and Eq.151, for all n;m.

If the problem is not quadratic, so that A is not a priori known, the algorithm remain the same,

but the analytical determination of the line minimum in step 1) is not performed. A numerical

minimization along the h directions is performed and the gradient g is calculated at the line

minimum.

CG converges much better than SD, with negligible additional e�ort. If the problem is purely

quadratic, exact convergence is guaranteed to be reached in N steps. This would take O[N3]

operations, not better than the inversion of A. Approximate convergence, however, can be reached

in a much smaller number of steps. Moreover CG can be applied in presence of large matrices A
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for which inversion is impractical or impossible. Only the results of operator A on trial vectors

A � x are required, not the entire operator.

In general, the rate of convergence is determined by the ratio between the largest and smallest

eigenvalues of the matrix A: the closer to 1, the better. Since in real-life example such ratio

may considerably di�er from 1, a technique known as preconditioning is often used to produce an

equivalent problem for which such ratio is closer to 1, thus yielding better convergence properties.

The CG method, in many variants, is much used not only for structural optimization but also

as an alternative method to self-consistency for �nding the minimum of the energy functional at

�xed ions (\electronic" minimization). In this case the variables x are the expansion coeÆcients of

KS orbitals into the PW or any other basis set. The algorithm becomes slightly more complicated

because orthonormality constraints between orbitals must be taken into account.

Other minimization methods The CG method does not use explicitly the second derivative

matrixA or its inverseA�1. This is an advantage if the number of variables in the problem is large

(as i.e. in the electronic minimization problem mentioned above): the storage of an approximate

A or A�1 would be prohibitely large. For structural optimization however the number of variables

never exceeds a few hundreds. Moreover it is conceivable to �nd with little e�ort reasonable

approximations to A, which is related to the force constant matrix. Quasi-Newton methods make

use of some guess for A and produce an iterative re�nement of A (or of A�1) using the available

information.
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