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      Precise 
 measurements of: 
        mW , mtop
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Motivation:

W mass and top mass are  fundamental
 parameters of the Standard Model:

→ since GF, αEM, sinθW are known with high 
     precision, precise measurements of mtop and 
     mW   constrain radiative corrections and  Higgs 
     mass (weakly because of logarithmic dependence)

So far : W mass measured at LEP2 and So far : W mass measured at LEP2 and TevatronTevatron
                            top mass measured at the top mass measured at the Tevatron Tevatron 

radiative corrections
∆r ~ f (mtop

2, log mH)
∆r ≈ 3%
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Fermi constant 
measured in muon
decay

Weinberg angle
measured at 
LEP/SLC

Electromagnetic constant
measured in atomic transitions, 
e+e- machines, etc.
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mW (from LEP2 + Tevatron) = 80.451 ± 0.033 GeV

mtop (from Tevatron) = 174.3 ± 5.1 GeV

mH dependence
in SM through
radiative 
corrections

Direct
measurements

light Higgs is light Higgs is favouredfavoured
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Year 2007:

∆mW ≈ 25 MeV  (0.3 ‰)       from LEP/Tevatron

∆mtop ≈ 2.5 GeV  (1.5 %)            from Tevatron

Can  LHC  do   better   ? 

YES :  thanks to large
   statistics
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Measurement of W mass

Method used at hadron colliders different
from e+e- colliders 

• W → jet jet : cannot be extracted from QCD
  jet-jet production ⇒ cannot be used

• W → τν : since τ → ν + X , too many undetected
  neutrinos ⇒ cannot be used

 only   W →  eν and W →  µν
decays are used to measure mW at
hadron  colliders
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W production at LHC : 

q’

q
W

l

ν
Ex.

eν, µν
σ (pp → W + X) ≈ 30 nb   

~ 300 × 106 events produced
~  60 × 106  events selected
                    after analysis cuts

one year at
low L, per
experiment

~ 50 times larger statistics than at Tevatron
~ 6000 times larger statistics than WW at LEP
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   Since             not known  (only 
can be measured through ET

miss), measure
transverse mass, i.e. invariant mass of lν 

in plane perpendicular to the beam : 

Lp
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W→ eν events  (data)  from CDF experiment
at the Tevatron 
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mT
W distribution is sensitive to mW

mT
W distribution

expected in 
ATLAS

mT
W (GeV)

mW= 79.8 GeV

mW= 80.3 GeV

⇒  fit experimental distributions with 
     Monte Carlo samples with 
      different values of mW   →  find mW

     which best fits data
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CDF data :    
W → µν transverse mass

From fit to transverse mass distribution:
        mW = 80.465 ± 0.100 GeV
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Uncertainties on mW

   Statistical error negligible → dominated by
   systematics (mainly Monte Carlo reliability
   to reproduce real life):

•  detector performance: lepton energy resolution,
   lepton energy scale,  recoil modeling, etc. 
•  physics: pT

W, θW, ΓW,  structures functions, 
   background, etc. 

Dominant error (today at Tevatron, also at LHC):
knowledge of lepton energy scale of the detector:
if  lepton energy scale wrong by 1%, 
then measured mW wrong by 1% → to achieve
∆mW ≈ 20 MeV (~ 0.2‰) need to know lepton
scale to ≈ 0.2 ‰ → most serious experimental 
challenge

 Constrained in situ by using  mainly
 Z → ll decays  (1 Hz at low L per l) :

 e.g. calibrate the electron energy scale in the 
 EM calorimeter requiring   mee=  mZ  
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Calibration of detector energy scale

Example : EM calorimeter

CALO
e-   beam

E = 100 GeV
 Emeasured

•  if  Emeasured = 100.000 GeV→  calorimeter is 
   perfectly calibrated
•  if  Emeasured = 99, 101 GeV → energy scale
   known to 1%

•  to measure mW  to ~ 20 MeV need to
    know energy scale to 0.2 ‰ , i.e.
    if   E electron = 100 GeV then 

     99.98 GeV < Emeasured < 100.02 GeV                 

⇒ one of most serious experimental challenges
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Calibration strategy:

•  detectors equipped with calibration systems
   which inject known pulses: 

• calorimeter modules calibrated with test beams
  of  known energy →  set the energy scale

• inside LHC detectors: calorimeter sits behind
  inner detector → electrons lose energy in
  material of inner detector → need a final 
  calibration “ in situ ” by using physics samples:

     e.g.     Z → e+ e-   decays       1/sec at low L

                constrain     mee = mZ 

reconstructed
known to ≈ 10-5

from LEP

cell out

in
in

 → check that all cells give same response:
      if not → correct 
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Expected precision on mW at LHC

Source of uncertainty                       ∆mW

Statistical error                                << 2 MeV

Physics uncertainties                       ~  15 MeV
(pT

W,  θW, ΓW, …)

Detector performance                       < 10 MeV
(energy resolution, lepton
 identification, etc,)

Energy scale                                       15 MeV

Total                                                 ~ 25 MeV
(per experiment, per channel)

Combining both channels (eν, µν) and both 
experiments (ATLAS, CMS), ∆mW ≈ 15 MeV
should be achieved.
However: very difficult measurement
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Measurement of mtop

•  Top is most intriguing fermion:
 --  mtop ≈ 174 GeV → clues about origin of particle masses ? 

 --  Γtop  ≈ 1.8 GeV → decays before hadronising

• Discovered in ‘94 at Tevatron → precise
  measurements of mass, couplings, etc.
  just started

Top mass
spectrum
from CDF

         tt → blν bjj events

S+BS+B

BB

--      u            c             t
         d            s             b

∆m (t-b) ≈
170 GeV → radiative
 corrections
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Top production at LHC: 

e.g.
g

g

t

t

t

t

q

q

σ (pp →     + X) ≈ 800 pbtt

 107        pairs produced in one year at low Ltt

~ 102  times more than at Tevatron

measure mtop,  σtt,  BR, Vtb,  single top, 
 rare decays (e.g. t → Zc),  resonances, etc. 

      production is the  main background to new 
  physics (SUSY, Higgs) 

tt
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Top decays: 

t W

b

BR ≈ 100% in SM

-- hadronic channel: both W →  jj 
  ⇒ 6 jet final states. BR ≈ 50 % but
   large QCD multijet background.  

 -- leptonic channel: both W → lν 
     ⇒ 2 jets + 2l + ET

miss  final states. BR ≈ 10 %.

     Little kinematic constraints to reconstruct mass.

 -- semileptonic channel: one W →  jj , one W → lν
   ⇒ 4 jets + 1l + ET

miss  final states. BR ≈ 40 %.
    If  l = e, µ : gold-plated channel for mass 

    measurement at hadron colliders. 

In all cases two jets are b-jets
 ⇒ displaced vertices in the inner detector
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 Example from CDF data : 

   tt → Wb Wb → blν bjj    event

e+ Jet 4 (b)

(b)W- , m = 79 GeV

W+

                  Secondary vertices
               τ (b-hadrons) ~ 1.5 ps → decay
               at few mm from primary vertex
               Detected with high-granularity

  Si detectors (b-tagging)
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Selection of         → bW bW → b lν bjjtt

Require:
-- two b-tagged jets
-- one lepton 
    pT > 20 GeV
-- ET

miss > 20 GeV
-- two more jets  

W→ jj

Then require:
-- |mjj-mW| < 20 GeV
-- combine jj with 
b-jets. Choose 
combination which 
gives highest pT top 

t → bjj

Note : W → jj can be used to calibrate jet energy scale 

ATLAS

ATLAS
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Expected precision on mtop at LHC

Source of uncertainty                       ∆mtop

Statistical error                                << 100 MeV

Physics uncertainties                       ~  1.3 GeV
(background, FSR, ISR,
 fragmentation, etc. )

  Jet scale (b-jets,      
  light-quark jets)                              ~ 0.8 GeV 

Total                                                 ~ 1.5 GeV
(per experiment, per channel)

     Uncertainty dominated by the knowledge of physics
     and not of detector. 
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Searches for the 
Standard Model 
Higgs boson
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Higgs production at LHC

gg fusion WW/ZZ fusion

associated Htt associated WH, ZH

Cross-section for pp → H + X
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Higgs decays

Decay branching ratios  (BR)

•  mH < 120 GeV: H →         dominates 
• 130 GeV < mH < 2 mZ : H → WW(*), ZZ(*) dominate
• mH >  2 mZ : 1/3 H → ZZ 
                       2/3 H → WW
• important rare decays : H → γγ 

 N. B.:  ΓH ~ mH
3    ΓH ~ MeV (100 GeV)  mH ~100 (600) GeV

bb

H f

~ mf

f
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Search strategy

Fully hadronic final states dominate but cannot
be extracted from large QCD background → look
for final states with leptons and photons (despite
smaller BR). 

Main channels:

•  Low mass region (mH < 150 GeV):
   
    -- H →       :  BR ~ 100%     →     σ ≈ 20 pb

        however: huge QCD background (NS/NB< 10-5)

        → can only be used with additional leptons:
            W H →  lν     ,       H → lνX         associated

                                                                     production
                                                                     (σ ≈ 1 pb)

   --  H → γγ :    BR ~ 10-3          →    σ ≈ 50 fb
       however: clean channel (NS/NB ≈ 10-2)

bb

bb bbtt
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• Intermediate mass region (120 GeV ≤ mH ≤ 2 mZ):

     -- H → WW*   → lν  lν
     -- H → ZZ*     → ll  ll

     ~ only two channels which can be extracted
        from background

• High mass region ( mH > 2 mZ):

    -- H →  ZZ     →  ll  ll     

        gold-plated channel (~ no background) !

    -- H →  ZZ     →  ll νν, lν jet jet 
    -- H →  WW  →  lν  jet jet

larger BR
→ increase
rate for
 mH > 500 GeV

Only two examples discussed here :
            H → γγ
          H → 4l

This mass region is disfavoured by EW data (SM internal
consistency if Higgs is so heavy ?)
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H → γγ   mH ≤ 150 GeV

H
W*

W*

W* γ

γ

σ × BR ≈ 50 fb
mH  ≈ 100 GeV

•  Select events with  two photons in the detector
   with   pT ~ 50 GeV
•  Measure energy and direction of each photon
•  Measure invariant mass of photon pair

2
21

2
21 )pp()E(E  m

rr
+−+=

• Plot distribution of   mγγ → Higgs should appear
  as a peak at mH

Most challenging channel for LHC electromagnetic
calorimeters 
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Main backgrounds:

• γγ production: irreducible (i.e.  same final 
  state as signal)

  e.g. :

≈  60     mγγ ~ 100 GeV

q

q

γ

γ

g

g

γ

γ

•  γ jet + jet jet production where
   one/two jets fake photons: reducible

q

g

γ

γ (s)π0q

e.g. :

)( ♦H
jj

~ 108

) ( 

)(  

♦H
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How can one fight these backgrounds ? 

• Reducible γjet, jet-jet: need excellent γ/jet 
  separation (in particular γ/π0 separation) to reject 
   jets faking photons

   Rjet ≈ 103          needed for       εγ ≈ 80%

ATLAS and CMS have calorimeters with good
granularity to separate single γ from jets or from
π0 → γγ.

Simulation of ATLAS calorimeter

With this performance : (γjet + jet-jet) ≤ 30% γγ
→ small
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• Irreducible γγ : cannot be reduced. But signal
  can be extracted  from background if mass 
  resolution good enough

m

1
  S ∪ ΓH < 10 MeV for 

mH ~ 100 GeV
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energy resolution
of EM calorimeter resolution of

the measurement
of the γ angle θ
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ATLAS EM calorimeter: 
• liquid-argon/lead sampling  calorimeter   

E

10%
  

E

(E) ∪

•  longitudinal segmentation
 →  can measure   γ  direction

E

mrad 50
)( ∪

vertex spread
~ 5.6 cm

σm≈ 1.3 GeV  mH ~100 GeV 

CMS EM calorimeter: 
• homogeneous crystal calorimeter

E

5%-2
  

E

(E) ∪

• no longitudinal segmentation  → vertex measured using
  secondary tracks from spectator partons → difficult
  at high L → often pick up the wrong vertex

σm≈ 0.7 GeV  mH ~100 GeV

 

ε ≈ 20%

ε ≈ 30%
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CMS   crystal  calorimeter
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 Expected performance

ATLAS :   100 fb-1

~ 1000 events
    in the peak 

mH (GeV)                   100            120               150 

Significance                4.4            6.5                 4.3
ATLAS,  100 fb-1
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CMS :  significance is ~ 10% better
             thanks to better EM calorimeter
             resolution 

100 fb-1 
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H → ZZ(*) → 4 l 120 ≤  mH < 700 GeV

e, µ

H Z(*)

Z

e, µ

e, µ

e, µ
mZ

•  “Gold-plated” channel for Higgs discovery 
   at LHC
•  Select events with 4 high-pT leptons (τ excluded):
   e+e- e+e-, µ+µ− µ+µ−, e+e- µ+µ−  

•  Require at least one lepton pair consistent with
   Z mass
•  Plot 4l invariant mass distribution :

      
   

222 )(�� −=
i

i
i

i pEm
r

⇒ Higgs signal should appear as peak in the
     mass distribution 
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Backgrounds:

-- irreducible : pp → ZZ (*) → 4l
    σm (H → 4l) ≈1-1.5 GeV         ATLAS, CMS 

    For mH > 300 GeV      ΓH > σm

--  reducible (σ ~ 100 fb) :    

 X  4l  tt +♦

l
νt , t W

b
l

 X  4l  bZb +♦

Both rejected by asking:
  --  mll ~ mZ

  --  leptons are isolated
  --  leptons come from interaction vertex
      ( leptons from B produced at ≈ 1 mm from vertex)

l
g

g

b

b

Z l
l

l
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    Expected performance

• Significance : 3-25    (depending on mass)
  for 30 fb-1

•   Observation possible up to mH ≈ 700 GeV
•   For larger masses:
      --  σ (pp → H) decreases
      --  ΓH > 100 GeV

H → ZZ* → 4l
ATLAS, 30 fb-1
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in CMS 

20 fb-1

100 fb-1
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Summary of Standard Model Higgs

Expected significance for one experiment 
over mass range  → 1 TeV

• LHC can discover SM Higgs over full mass 
   region (S > 5) after ≤ 2 years of operation
• in most regions more than one channel is available
• detector performance (coverage, energy/momentum
   resolution, particle identification, etc.) crucial in

   most cases 
•  mass can be measured to ≈1‰ for mH < 600 GeV
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-- SM  Higgs boson can be discovered at   ≈  5 σ  
    with 10 fb-1/ experiment  (nominally  one  year at 
    1033 cm-2  s-1)  for mH ≤ 130 GeV
-- Discovery  faster for larger masses
-- Whole mass range can be excluded at 95% CL
    after   ~1 month of  running at 1033 cm-2 s-1.

However, it will take time to operate, understand, calibrate
ATLAS and CMS → Higgs physics will not be done before 
2007-2008 given  present machine schedule

L  is  per 
experiment

LEP2

5σ
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•   For  mH ~ 115 GeV  Tevatron needs (optimistic analysis): 
      ~ 2 fb-1    for  95%  C.L.  exclusion  →   end  2003 ? 
      ~ 5 fb-1    for  3σ  obervation → end 2004 ? 
      ~ 15 fb-1  for  5σ  discovery → end 2007 ? 
•   Discovery possible up to mH ~120 GeV
•   95% C.L. exclusion possible up to mH ~185 GeV

      Tevatron  schedule : 
    -- Run 2A : March 2001-end  2003  : ~ 2 fb-1 /expt. 
    -- Run 2B : middle 2004 →  ?          : ~ 15 fb-1 /expt  by  end 2007

What about  Tevatron ? 
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2008
Both machines  (Tevatron, LHC) could 
achieve  5σ discovery if  mH ≈ 115 GeV.    
Who will find it first ? 

          LHC                            versus           TEVATRON

Higgs cross-section ~10-100 higher               S/B ~ 5 higher

Conservative estimates                        Less conservative predictions
(cross-sections, cut analyis, etc.)          (e.g. Neural Network analysis)
mH=115 GeV 10 fb-1  S/√B ≈ 4.7       mH=115 GeV 10 fb-1  S/√B ≈ 5.3 
4.7 → 7 using Tevatron approach 

Will take lot of time to understand       Has  lot of time to understand
Detectors and physics                             detectors and physics

Ready  in 2007 ?                                  15 fb-1 by 2007 ?  Need  3 *  p

“ This does not 
necessarily  means 
that  this is the H
       mass !”
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Let’s assume the Higgs is found; what do
we do  now ? 
Want to measure the Higgs properties, e.g.

→ mH can be measured to 0.1% using precise
     calorimeter and muon systems of ATLAS and CMS

    

mH
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Summary of Part 2

•  Examples of precision physics at LHC: W mass can be 
     measured to ~15 MeV, top mass  to ~ 1.5 GeV

•  Standard Model Higgs boson  can be  discovered over 
     the full mass region  up  to 1 TeV in ~ 1 year of operation.
•  Excellent detector performance required:
    → Higgs searches  have driven the LHC  detector design.
•   Main channels :  H  → γγ, H → 4l
•   If SM Higgs not found before / at LHC, then alternative methods 
    for electroweak symmetry breaking will have to be found
  

End of Part 2 


