Ricerca del Higgs a LHC

Ricerca del Higgs a LHC

Come estrarre...

... da questo ...

Higgs $\rightarrow 4\mu$ +30 eventi min. bias Senza sapere con precisione dove guardare

Higgs a LHC: una sfida

Per diecimila miliardi di:

Ce ne e' uno di:

Higgs a LHC: una sfida

Fermilab SSC CERN Piccole sezioni d'urto 1 HC Richiedono le piu' alte luminosita' 10⁹ E710 σ_{to} $L=10^{34-35} \text{ cm}^{-2}\text{s}^{-1}$ UA4/5 $\sigma_{b \bar{b}}$ 10^{7} 1 mb Rate di eventi CDF per vari canali fisici: UA1 10⁵ 10¹⁰ Hz • Inelastico : α (proton - proton) α π τ α π • W -> lv : 10^3 Hz E^{jet}>0.25 TeV • produzione tt : 10³ 10^2 Hz • Higgs (m=100 GeV) : 1 Hz $CDF(p \overline{p})$ • Higgs (m=600 GeV) : 10⁻¹ Hz 1 nb 10 UA1/2 (includendo i B.R.: $\sim 10^{-2}$) $\sigma_{\widetilde{a}\widetilde{a}}(m_{\widetilde{a}} = 500 \text{ GeV})$ CDF/DO 10⁻¹ $\sigma_{t\bar{t}}$ m_{top} = 174 GeV m_{top} = 175 GeV Capacita' di selezione 1 pb m_H= 100 GeV per la scoperta del Higgs $\approx 10^{14-15}$ 10⁻³ σ_{Hiaas} i.e. 100 000 volte meglio di quanto fatto sinora

0.001

0.01

0.1

√s TeV

1.0

10

100

10³⁴ cm⁻²

Events/s for 🚝

al Tevatron per leptoni di alto p_T!

LHC e' una fabblica di top, W/Z, Higgs, SUSY, buchi neri ...

Rates di eventi attesi in ATLAS per processi rappresentativi di fisica (conosciuti e nuovi) a bassa luminosita' (L=10³³ cm⁻² s⁻¹)

Processo	Eventi/s	Eventi per10 fb ⁻¹ (un anno)	eventi totali raccolti altrove entro il 2007 (?)
$W \rightarrow e \nu$	30	10 ⁸	10 ⁴ LEP / 10 ⁷ Tevatron
$Z \rightarrow ee$	3	107	10⁶ LEP
Тор	2	10 ⁷	10⁴ Tevatron
Beauty	10 ⁶	$10^{12} - 10^{13}$	10 ⁹ Belle/BaBar
H (m=130 GeV)	0.04	10 ⁵	
Gluino (m= 1 TeV)	0.002	10 ⁴	
Black holes m > 3 TeV	0.0002	10 ³	

Collisions at LHC

LHC: l'acceleratore Fattori che determinano la luminosita' L

- L(α=0) = 1.07 10⁻⁴ 1/Δt N² E / β_e ε, dove:
- ✓ α angolo di incrocio tra I fasci ✓ Δt intervallo tra due bunch crossings, Δt = 25 ns
- ✓ N numero di protoni per bunch, N = 10^{11}
- \checkmark E energia dei fasci, E = 7 TeV

✓ β_e e' la β-function nel punto di interazione, β_e = 0.5 m

✓ ε emittanza normalizzata, ε = 15π 10⁻⁶ m.rad

Fattori limitanti la luminosita' L?

1. L'angolo α di incrocio tra i fasci

A LHC, $\alpha = 200 \mu rad \rightarrow L(\alpha) = 0.89 L(0)$

 α aumenta → le risonanze synchro-beta (instabilita') aumentano
 α decresce → gli effetti beam-beam aumentano

Fattori limitanti la luminosita' L

2. effetti <u>Beam-beam :</u>

tendono and aumentare l'emittanza e decrescono l'intensita' dei fasci

Globalmente la diminuzione di luminosita' dovuta a effetti beam-beam sono determinati empiricamente, secondo misure di un parametro ξ al SppS: ξ aumenta linearmente con il numero N_i delle zone di

interazione :

 $\xi = 1.54 \ 10^{-18} \ N_i \ N \ / \ \epsilon \le \ 0.01 - 0.02$

ε cresce → la luminosita' decresce ε cresce → gli effetti beam-beam decrescono Altri aspetti rilevanti alla situazione sperimentale

3. Energia immagazzinata:

- $\checkmark \approx 500$ MJoule per fascio $\equiv \approx 100$ kg of TNT
- Problema per il beam dumping: decelerazione prima del dumping
- ✓ La corrente immagazzinata ~ 1A → I ≈ 0.1 µA
 e' sufficiente per il quenching di un dipolo
 superconduttore
 - ⊗ Sistema sofisticato di collimazione e pulizia
 - 😕 dei fasci
 - © Gli esperimenti sono sicuri per perdite casuali dei fasci?

Altri aspetti condizionano la situazione sperimentale

4. <u>potenza emessa per radiazione di Sincrotrone</u>

 $L = 2.1 \ 10^{41} \ (\xi / \beta_e) \ P_{synch} / \gamma^2 \ B$ $P_{synch} \propto \gamma^4 \ e' \ circa \ 20 \ kW \ a \ LHC$

Numero di zone sperimentali

② 2 zone, $\Delta t = 25$ ns, 1.7 10¹¹ protoni per bunch → L = 2.7 10³⁴ cm⁻² s⁻¹
③ 1 zona (!), $\Delta t = 45$ ns, $\beta_e = 0.3$ m (quad. a 6 m!!)

 \rightarrow L = 7.8 10³⁴ cm⁻² s⁻¹

La sezione d'urto totale a LHC

Raggi cosmici di altissima energia (HECR)

Distribuzioni in rapidita'

Caratteristiche degli eventi inelastici

Tevatron a LHC

La struttura temporale dei pacchetti

Numero delle interazioni inelastiche per bunch crossing

 $\langle n \rangle = \sigma_{inel} x L x \Delta t / \varepsilon_{bunch}$

LHC: $\langle n \rangle = 70 \text{ mb x } 10^{34} \text{ cm}^{-2}\text{s}^{-1} \text{ x } 25 \text{ ns} / 0.8 = 23$

Grande aumento rispetto agli acceleratori precedenti:

LEP:	$\Delta t = 22 \ \mu s$	e	<n> << 1</n>
SppS:	$\Delta t = 3.3 \ \mu s$	e	< n > ≈ 3
HERA:	$\Delta t = 96 \text{ ns}$	e	<n> << 1</n>
Tevatron:	$\Delta t = 0.4 \ \mu s$	e	$<$ n $> \approx 2$

LHC i problemi di radiazione

1. Danni causati da radiazione ionizzanti

- Causati dall'energia depositata nel materiale del rivelatore
- > : ≈ 2 MeV g⁻¹ cm⁻² una particella al min. ion.
- > Ma anche dai fotoni degli sciami elettromagnetici
- Il danno e' proporzionale all'energia depositata (dose) misurata in Gy (Gray):
 - 1 Gy = 1 Joule / kg = 100 rads
 - 1 Gy = 3 10⁹ particelle per cm² di materiale con densita' unitaria

A LHC ,luminosita' di progetto, la dose ionizzante : $\approx~2~10^6~Gy~/~r_T^{-2}~/$ anno,

dove r_T (cm) e' la distanza trasversa dal fascio

2. Danni causati da neutroni

- I neutroni sono generati negli sciami adronici nei calorimetri e soprattutto negli schermi dei rivelatori a piccolo angolo e nei collimatori di fascio
- Questi neutroni (con energie tra 0.1 to 20 MeV) rimbalzano avanti e indietro (come molecole di gas) sui vari nuclei e riempiono l'intero rivelatore.
- La fluenza aspettata di neutroni e'~ 3 10¹³ per cm² per anno nella parte piu' interna dei rivelatori (il sistema di tracciatura)
- → Queste fluenze sono moderate dalla presenza di idrogeno:
 - σ(n,H) ~ 2 barns con collisioni elastiche
 - Il libero cammino medio di neutroni ~ 5 cm in questo intervallo di energia
 - In ciascuna collisione il neutrone perde ~ 50% della sua energia (sarebbe~ 2% su ferro)

- I neutroni provocano seri danni ai semiconduttori poiche', indipendentemente dall'energia depositata, modificano direttamente la struttura cristallina
 - → necessita' di elettronica resistente a radiazione
 - L'elettronica ordinaria muore per dosi sopra 100 Gy e fluenze sopra 10¹³ neutroni/cm²
 - L'elettronica "radiation hard" (specialmente quella submicrometrica) puo' sopravvivere a 10⁵-10⁶ Gy e 10¹⁵ neutroni/cm²
- Molti materiali organici sopportano 10⁵-10⁶ Gy

La certificazione dei materiali e il controllo di qualita' sono necessari al livello richiesto per le applicazioni spaziali!!

Effetti di pile-up a alta luminosita'

"Pile-up" e' l'insieme degli effetti dovuti alle 23 interazioni "poco interessanti" (minimum bias) che avvengono nel singolo bunchcrossing e che si sovrappongono al processo di hard-scattering che tipicamente fa scattare il trigger.

La minimizzazione degli effetti di pile-up e' una delle principali richieste all'apparato sperimentale:

➢ le misure devono essere il piu' possibili precise e veloci → e' una richiesta molto forte specialmente per l'elettronica

→ i tipici tempi di risposta sono 20-50 ns (!)

≻Un rivelatore altamente granulare minimizza gli effetti di pileup spaziali

→ questo implica un gran numero di canali (100 milioni pixels, 200,000 celle nel calorimetro elettromagnetico)

Pile-up a grande luminosita'

Prima conseguenza del pile-up \rightarrow la ricostruzione della posizione del vertice lungo i fasci in un dato bunch crossing

A LHC, $\sigma_{bunch} = 8 \text{ cm} \rightarrow 1a$ dispersione dei vertici di interazione e' 5.6 cm

✓ bisogna ricostruire circa 25 vertici lungo il fascio per ciascun trigger

- ✓ I processi di interesse normalmente hanno tracce di
- ✓ piu' alto impuso e maggiore molteplicita' ma non una
- ✓ distinzione chiara per quel che riguarda il vertice
- ✓ Prendiamo il caso di H → $\gamma\gamma$ a alta luminosita':
 - ricostruiamo in media 5 dei 25 vertici prodotti
 - si trova il vertice $H \rightarrow \gamma \gamma$ vertex nel 72% dei casi con
 - r.m.s.= 106 μm

Pile-up a grande luminosita'

Seconda conseguenza del pile-up \rightarrow ad altissima luminosita', c'e' il rischio di produrre un dato stato finale dalla sovrapposizione di due eventi diversi.

Quale e' la probabilita' che questo avvenga dato un processo con sezione d'urto σ_{12} , che puo' essere prodotto dalla sovrapposizione di due processi 1 e 2 con sezioni d'urto σ_1 e σ_2 ?

La relazione tra σ_{12} e $\sigma_{12}^{pile-up} = \sigma_{12}^{p}$ dipende dalla luminosita' L e dalla spaziatura Δt tra i bunches ($\langle n \rangle = \sigma_{inel} L \Delta t$)

Probabilita' di pile-up : $P_e = n \sigma_{12}^p / \sigma_{inel} e P_e = n(n-1)P_1P_2/2,$ dove $P_i = \sigma_i / \sigma_{inel} << 1,$ quindi $\sigma_{12}^p = \sigma_1 \sigma_2 L \Delta t / 2$

Effetti di Pile-up

In pratica se L = 1. 10^{34} cm⁻² s⁻¹ e Δt = 25 ns, abbiamo $\sigma_{12}^{p} < \sigma_{12}$ se $\sigma_{1} \sigma_{2} / \sigma_{12} < 0.8 \ 10^{10} / 1$ pb

Primo esempio: ricerca degli stati ZZ a LHC

 $\sigma_{12} = 10$ pb per il continuo ZZ oppure $\sigma_{12} = 1$ pb for H \rightarrow ZZ, m_H = 800 GeV e $\sigma_1 = \sigma_2 = \sigma_Z = 40$ nb = 40,000 pb

Otteniamo $\sigma_1 \sigma_2 / \sigma_{12} = 1.6 \ 10^8 \text{ pb se L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, e che $\sigma_{ZZ}^{e} = \sigma_{ZZ} \text{ per L} \approx 5 \ 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Effetti di pile-up

Secondo esempio: eventi con due muoni con $p_T^{\mu} > 10$ GeV

 $\sigma_{12} = \sigma_{\mu\mu}(p_T^{\mu} > 10 \text{ GeV}) \approx 10 \text{ nb} (Z \rightarrow \mu\mu \text{ o } pp \rightarrow bb \rightarrow \mu\mu + X)$ $\sigma_1 = \sigma_2 = \sigma_{\mu}(p_T^{\mu} > 10 \text{ GeV}) \approx 1000 \text{ nb} \text{ (decadimento semileptonico dei b)}$

Otteniamo $\sigma_1 \sigma_2 / \sigma_{12} \approx 10^8$, con lo stesso risultato.

<u>Conclusioni:</u> in generale, il pile-up di eventi rari per simulare eventi ancora piu' rari e' trascurabile.

Segnatura delle varie particelle

Misura dei neutrini nei collider adronici

- poiche' la maggior parte dell'energia dell'interazione si perde nei tubi a vuoto, si puo' usare solo il bilanciamento energia/impulso nel piano trasverso
- \rightarrow si usano E_T^{miss} , impulso trasverso mancante
- e massa trasversa
- Il rivelatore deve essere ermetico al massimo
 - → non scappa nessun neutrino
 - → ma anche non c'e' facile accesso al rivelatore (lunghi periodi per modifiche all'apparato)

I rivelatori

I rivelatori

ATLAS Tilecal : 85% of modules ready

300 CeV 150 CeV 1000 38 0.2ßВ Tilecal Module0 data Tilecal Protocype data 0.15 G-CALOR Montecarlo О. 0.1 $\frac{50\%}{\sqrt{E}} \oplus 4\%$ 0.05 resolution from ATLAS test beam 0 0.10 0.20.3 $1/\sqrt{E_{haven}}$ (GeV^{-1/2})

Hadronic calorimeters

L'istallazione di ATLAS nella caverna

ATLAS

D712/mb-26/06/93

La temporizzazione dei segnali

10

25 ns bunch crossing interval:

5 6 7 8 9 40 MHz pipelined read-out electronics 40 MHz pipelined trigger processors 40 MHz electronics synchronisation Multi-bunch crossing signal integration

~1000 particles / BC: 10's millions electronics channels Tbit/s dataflow

Physics reach at: 10⁷ trigger rejection power 10¹³ analysis selection power

SM Higgs a LHC

Quali i decadimenti del Higgs a LHC?

- " Il bosone di Higgs si accoppia alle particelle piu' massive"
- E' vero per i fermioni: $\Gamma(H \rightarrow ff) \propto m_H m_f^2$ Ma l'accoppiamento ai bosoni di gauge e' ancora piu' forte: $\Gamma(H \rightarrow VV) \propto m_H^3$ per V = W, Z <u>Consequenze:</u>
- Per m_H > 2m_Z, Γ_H aumenta velocemente con m_H
 Per m_H > 2m_Z, BR(H→ WW) ~ 2/3 dominante
 Per m_H < 2m_Z, BR(H → Z*Z* or W*W*) puo' essere significativo (H → bb domina a masse piu' basse)

Potenziale di scoperta del Higgs a LHC

S

 $\int B$

- m_H > 130 GeV : la scoperta e'
- facile con il canale $H \rightarrow ZZ \rightarrow 4\ell$ (S/B \geq 3).
- $m_H < 130 \text{ GeV}$: soprattutto $H \rightarrow \gamma \gamma e$ $ttH \rightarrow ttbb$

Il bosone di Higgs SM puo' essere scoperto a $\approx 5 \sigma \text{ con 10 fb}^{-1/}$ esperimento (1 anno a L= 10³³ cm⁻² s⁻¹) se m_H \leq 130 GeV.

La scoperta e' piu' veloce per massa piu' grandi L'intero intervallo di masse puo' essere escluso a 95% CL dopo ~1 mese di presa dati a L= 10³³ cm⁻² s⁻¹

Tuttavia quanto tempo occorrera' perche'ATLAS e CMS siano pienamente operativi (calibrazioni, allineamenti, messa in tempo, efficienza di trigger...)

→ la fisica del Higgs comincera' nel 2007 secondo l'attuale previsione del funzionameneto di LHC

due canali complementari → risultato robusto, interpretazione e misura degli accoppiamenti

Higgs leggero

• Sezioni d'urto LO per segnale e fondo:

(e.g. Wjj, multijets)

L'uso di sezioni d'urto LO e' conservativo se $\sqrt{K_{R}} < K_{S}$ (significativita' = S / \sqrt{B})

- Simulazione completa del rivelatore (GEANT) (validata con test beam) per determinare efficienze, rigetto del fondo, risoluzioni, code non statistiche, etc... Spesso con assunzioni conservative: e.g. 2D b-tagging
 - usati solo canali non controversi:
 - -- fondo sotto controllo (fisica, trigger, risposta del rivelatore)
 - -- significativita' $\geq 3 \sigma$ per canale

Ricostruzione del segnale

Vogliamo ricostruire: $M_{\gamma\gamma}^{2} = 2 E\gamma_{1}E\gamma_{2}(1-\cos\theta_{12})$

Quali i contributi alla risoluzione $m_{\gamma\gamma}$?

1) Misura di E_{γ} :

- Risoluzione intrinseca del calo
- Calibrazione/uniformita' del calorimetro
- Effetti di Pile-up
- 2) Misura di θ_{12}
 - Misura della posizione e della direzione degli sciami em
 - Misura della posizione del vertice z_v

Risoluzione angolare e accettanza

 \rightarrow il vertice e' misurato dalle tracce secondarie del evento underlying

- \rightarrow spesso viene selezionato il vertive sbagliato
- → minore accettanza nella finestra di massa del Higgs

Inoltre a causa de grande campo B in CMS (4T) : 30% di γ → e⁺e⁻ e' perso, altri finiscono nella coda dello spettro di massa

Conclusioni sulla ricostruzione del segnale

- 1) Gli effetti di pile-up sono piccoli perche' gli sciami elettromagnetici sono molto localizzati (ma bisogna recuperare le conversioni dei fotoni!)
- 2) Per il calorimetro di CMS ci aspettiamo circa 1000 eventi per anno alla massima L ricostruiti in un bin di 1 GeV di massa (!) e in assenza di effetti strumentali dovuti al rivelatore:
 - 20-25% dei fotoni convertono nel campo di 4 T
 - Bisogna conoscere il vertice al meglio di 1 cm → tracker???
- 3) Per il calorimetro di ATLAS ci aspettiamo lo stesso numero di eventi in un bin di massa di 4 GeV → la conoscenza del vertice non e' cosi' critica inoltre il calo EM di ATLAS fornisce una sufficiente accuratezza nel puntamento dello sciame.

I fondi:

- produzione $\gamma\gamma$: irriducibile (i.e. Stesso stato finale del segnale
- ma non risonante)

e.g. :

- produzione γ jet + jet jet dove 1 o 2 jet simulano i fotoni
- fondo riducible e.g. :

$$\frac{\sigma_{jj}}{\sigma (H \rightarrow \gamma \gamma)} \sim 10^7$$

$\frac{\mathbf{SM} \mathbf{H} \rightarrow \gamma \gamma}{\underline{\mathbf{I} \text{ fondi}}}$

- 1) I fondi irriducibili vengono da qq $\rightarrow \gamma\gamma$ and gg $\rightarrow \gamma\gamma$ (box)
- **2)** I fondi riducibili da π^0 , η ($\rightarrow \gamma\gamma$) nella frammentazione dei jet:
 - Stati finali con molti fotoni → appaiono come fotoni singoli
 - Fotoni non isolati nei jet → appaiono come fotoni isolati
 - Problema arduo: a p_T ≈ 50 GeV, jet-jet / γγ ≈ 10⁷
 → ciascun jet deve essere rigettato con un fattore 10,000 per portare il fondo riducibile sotto quello irriducibile
 - tuttavia, a $p_T \approx 50$ GeV, $\pi^0/\text{jet} \approx 10^{-3}$
 - → separare i fotoni isolati dai decadimenti del π^0 a 50 GeV
 - → i fotoni del π^0 sono distanti ≈ 1 cm
 - \rightarrow ci vuole un calorimetro granulare in posizione a ~ 4-5 X₀

→ bisogna convertire entrambi i fotoni e misurarne lo sciame quando e' ancora stretto

Rigetto del fondo da jet di QCD

Rigetto soprattutto dalla segmentazione longitudinale del calorimetro: 4 mm η -strips nel primo compartimento (separazione γ / π^0) <u>yy irriducibile</u> : Il segnale puo' essere estratto dal fondo se la risolu
zione in massa invariante e' sufficientemente buona

$$\Gamma_{\rm H} < 10 \text{ MeV for}$$

 $m_{\rm H} \sim 100 \text{ GeV}$

1

$$m_{\gamma\gamma}^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2} = 2E_{1}E_{2}(1 - \cos\theta_{12})$$

Anche assumendo un fondo riducibile trascurabile il rapporto segnale/fondo, per questo canale e' piccolo: 1%: Il segnale non e' osservabile a "occhio nudo" Si puo' fare, tuttavia un'analisi statistica "credibile "

- 1) la distribuzione attorno a m_H (sidebands) sono continue e a alta statistica
- 2) sfruttare la risonanza dello Z per capire le prestazioni del calorimetro EM

- fondi principali:
 - -- il combinatorio del segnale (4b finali)
 - -- Wjjjjjj, WWbbjj, etc.
 - -- ttjj (dominante ma non risonante)

Ridotti

ricostruendo la
massa di
entrambi i top

SM ttH con $H \rightarrow bb$

SM ttH conH \rightarrow bb

 $S/B \sim 30\%$

Il fondo (60% da ttbb) puo' essere calibrato con la misura di ttjj dove j e' anti-b taggato

•CMS (con K = 1.5!) •Likelihood per i decadimenti del t • & cinematica dell'evento •Si usa COMPHEP per il fondo ttjj

Ancora Higgs leggero: qqH → qqH

Produzione del Higgs via fusione di bosoni deboli W/Z

Motivazioni:

- •Allarga il potenziale di scoperta del Higgs
- •Misura dei parametri del Higgs
- (accoppiamento ai bosoni, fermioni (tau), larghezza totale)
- •Misura del Higgs invisibile!!
- •Proposto da D.Rainwater and D.Zeppenfeld et al.:
- (hep-ph/9712271, hep-ph/9808468 and hep-ph/9906218)
- $\sigma = 4 \text{ pb} (20\% \text{ della sezione d'urto a } m_{\text{H}} = 130 \text{ GeV})$

Vantaggio di una segnatura distintiva:

- 2 jet in avanti di grande P_T
- scarsa attivita' adronica nella regione centrale
- \Rightarrow <u>l'esperimento deve:</u>
 - ricostruire i jet in avanti
 - estrarre i jet dagli effetti di pile up nelle zone centrali e in avanti

Hpp ← Hpp

La capacita' di ricostruzione dei jet tag studiata in ATLAS con simulazione completa (Pisa)

 $qqH \rightarrow qqH$ <u>Jets da eventi di pile-up</u>

La produzione di jet falsi nella zona centrale studiata con una simulazione completa in funzione della luminosita' di LHC per il processo di fusione di bosoni vettori (Pisa).

- a bassa L: una soglia di jet veto di 20 GeV e' sufficiente
- questa soglia deve essere aumentata a alta L

$Hpp \leftarrow pp$

<u>Significativita' finale del segnale: $H \rightarrow W^{(*)}W^{(*)}$ </u>

m_H	(GeV)	130	140	150	160	170	180
Upper M_T bound for	(GeV)	140	150	160	175	190	220
mass window							
$H \to WW^{(*)} \to e\mu + X$							
Signal	(5 fb^{-1})	4.7	8.3	13.3	21.6	21.7	18.1
Background	(5 fb^{-1})	3.1	3.8	4.3	5.5	6.2	6.9
Stat. significance	(5 fb^{-1})	2.1	3.3	4.7	6.5	6.3	5.2
$H \to WW^{(*)} \to ee/\mu\mu + X$							
Signal	(5 fb^{-1})	4.4	8.3	14.1	20.4	22.8	18.3
Background	(5 fb^{-1})	4.2	4.7	5.5	6.4	7.3	7.9
Stat. significance	(5 fb^{-1})	1.8	3.0	4.6	6.0	6.2	5.1
$H \to WW^{(*)} \to l\nu$	jj + X						
Signal	(30 fb^{-1})	4.5	7.5	10.5	24.0	24.0	18.0
Background	(30 fb^{-1})	6.0	6.0	6.0	18.0	18.0	18.0
Stat. significance	(30 fb^{-1})	1.5	2.4	3.3	4.6	4.6	3.5

$qqH \rightarrow qqH$ <u>Decadimento H $\rightarrow \tau \tau$ </u>

evts / 5 GeV

m_H (GeV)	110	120	130	140	150
$H \to \tau \tau \to e \mu P_T^{miss}$					
Signal	7.7	7.0	5.1	3.3	1.5
Background	10.1	3.7	3.3	2.7	2.2
Stat. significance	2.1	2.8	2.2	1.6	-
$H \to \tau \tau \to ee/\mu \mu P_T^{miss}$					
Signal	9.2	7.2	5.7	3.1	1.5
Background	15.4	7.6	5.6	4.6	3.4
Stat. significance	2.1	2.2	2.0	1.2	-
$H \to \tau \tau \to l \ had \ P_T^{miss}$					
Signal	19	15.6	13	10	5
Background	27.0	11.7	10.6	7.4	6.7
Stat. significance	3.3	3.8	3.4	3.0	1.6
combined					
Stat. significance	\parallel 4.3	5.1	4.4	3.6	2.1

Risoluzione in massa: 11 GeV a m_H =120 GeV

Hpp ← Hpp

- I canali VBF (specialmente WW*) potrebbero essere quelli della
 scoperta del Higgs a bassa luminosita'
- •Per 10 fb⁻¹ in ATLAS:significativita' a 5σ per $120 \le m_{\rm H} \le 190$ GeV (combinati con i canali standard)

$VBF qqH \rightarrow qqH$

Incertezze sul livello di fondo

(si usano le sidebands: la normalizzazione del fondo e' effettuata fuori della regione del segnale)

$Hpp \leftarrow Hpp$

Il potenziale di scoperta di ATLAS per 30 fb⁻¹ per un Higgs leggero

• Il canale VBF migliora sensibilmente la sensitivita' a bassa massa

• parecchi canali sono disponibili nell' intervallo di massa completo

SM Higgs: la misura delle sue proprieta' La massa M_H

Incertezza sistematica dominante: la scala di energia assoluta γ / ℓ assunta 1‰ Traguardo: 0.2‰ (per la mis della massa del W) La scala ottenuta da Z $\rightarrow \ell \ell$ (vicino alla massa del Higgs)

2) Per H →bb, la misura della massa e', al meglio, 1%

Gli accoppiamenti del bosone di Higgs

Rapporto di accoppiamento bosone/bosone

Diretto :-
$$\frac{\sigma \times BR(H \rightarrow WW^*)}{\sigma \times BR(H \rightarrow ZZ^*)} = \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$

Le correzioni QCD si cancellano

Indiretto :-
$$\frac{\sigma \times BR(H \to \gamma \gamma)}{\sigma \times BR(H \to ZZ^*)} = \frac{\Gamma_g \Gamma_\gamma}{\Gamma_g \Gamma_Z} \sim \frac{\Gamma_W}{\Gamma_Z}$$

 $\Gamma(H \to \gamma \gamma) = \frac{G_F m_H^3}{8\pi \sqrt{2}} (\frac{\alpha}{\pi})^2 |I|^2$

Le correzioni QCD si cancellano

 $\Gamma_{\rm W}$ e Γ_{γ} sono proporzionali attraverso un coefficiente predetto teoricamente con una precisione del 10%

Accoppiamenti del bosone di Higgs

Rapporto accoppiamenti fermione/bosone, (solo fermioni terza famiglia: τ , top)

Diretto: $\sigma x BR(qqH(->WW))/\sigma x BR(qq->qqH(->\tau\tau)) = \Gamma_W/\Gamma_{\tau}$ VBF/VBF

Indiretto: $\sigma x BR(WH(\Rightarrow \gamma \gamma))/\sigma x BR(H(\Rightarrow \gamma \gamma)) \sim \Gamma_W/\Gamma_t * C_{QCD}$ WH/gg $\sigma x BR(WH(\Rightarrow WW))/\sigma x BR(H(\Rightarrow WW)) \sim \Gamma_W/\Gamma_t * C_{QCD}$ WH/gg $\sigma x BR(ttH(\Rightarrow bb))/\sigma x BR(ttH(\Rightarrow \gamma \gamma)) \sim \Gamma_b/\Gamma_W$ ttH/ttH

Ricerca del Higgs al Tevatron Le migliorie del Tevatron (Run II)

Il Run II iniziato Nell'estate 2001 Mirava a

2 fb⁻¹ in 2003 (0.4)

• 4 fb⁻¹ in 2004 (?)

• 15 fb⁻¹ in 2007 (?)

Run II CDF and D0 Detectors

Nuovi rivelatori:

silicon, drift chamber, TOF, sci-tile forward calorimeters, forward muon system, front-end, trigger electronics software

Nuovi rivelatori: silicon, sci-fi tracker, B = 2T, preshower, forward muon system, front-end, trigger electronics, software Il potenziale di scoperta del Tevatron presentato come una sensivita' globale ottenuta da vari canali nessuno dei quali maggiore di 3σ e per una luminosita' integrata di 10-15 fb⁻¹ per experimento

SM sfavorito ma non escuso M. Chanowitz, hep-ph/0207123: CL(global fit)=0.01, CL(M_H>114GeV)=0.30 m_H (GeV) Run II: misure di precisone EW e misure dirette del Higgs potrebbero portare a inconsistenze nello SM

SM Higgs al Tevatron

SM Higgs al Tevatron

Paragone tra le potenzialita' del Tevatron e LHC				$\sqrt{s} = 2 \text{ TeV}$
Le sezioni d'urto sono ~10 piu' grandi a LHC Per $qq \rightarrow W/Z + H \sim 70-80$ volte piu' grandi Per $gg \rightarrow H$ (grandi contributi di gluoni a LHC)				canali accessibili (?): WH, ZH, $WW^{(*)}$
Process	σ· BR pp 2 TeV	σ· BR pp 14 TeV	LHC Tevatron	anche senza speranza: ttH $???$
WH $\rightarrow \ell \nu b\overline{b}$ m _H =120 GeV	20 fb	210 fb	10	$qq \rightarrow WH$
$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ $m_H = 150 \text{ GeV}$	15 fb	1150 fb	77	$gg \rightarrow H$
$H \rightarrow \gamma \gamma$ $m_{\rm H} = 150 \text{ GeV}$	0.3 fb	22 fb	73	gg→ H
$H \rightarrow ZZ \rightarrow 4\ell$ $m_{\rm H} = 150 \text{ GeV}$	0.07 fb	5.5 fb	78	gg→ H

Le sezioni d'urto EW ~10 volte piu' grandi a LHC Le sezioni d'urto QCD ~ 100 volte piu' grandi (I contributi gg e qg fortemente favoriti)

Sezioni d'urto di produzione (PYTHIA) accettanze

nza per i tagli te maggiore al
)/1:
sica e' piu' centrale
ttanza niu? grando
italiza più granue
ore emissione di gluon
azione iniziale (√s e' cola)
veto meno pericolosa

Perche' i canali WH and ZH channels (canali di scoperta al Tevatron) non sono considerati a LHC ?

- I fondi (tt, Wjj, Wbb, WZ):
- -- grandi e con forme diverse
- -- non ancora ben conosciuti (K-factors ?)
- -- non tutti sono misurabili dai dati (specialmente Wbb, Zbb)
- \rightarrow Grande incertezza sistmatica e S/B ~ qualche %

→ Canali di scoperta marginali a LHC

Conclusioni sul paragone Tevatron/LHC

- Il segnale al Tevatron molto piu' basso che a LHC (di un fattore 30-50)
- 2) Ma anche il fondo aumenta piu' velocemente del segnale a LHC
- 3) I migliori canali a LHC, H → gg, ttH con H → bb and H → ZZ^(*) → 4 leptoni, non sono accessibili al Tevatron
- 4) Degli altri canali, i piu' promettenti al Tevatron a bassa massa sono: WH con H → bb e gg → H, con H → WW.

Per WH with $H \rightarrow bb$, possiamo dire che

- Con la stessa analisi: S/B = 3.3 (LHC) vs 2.3 (Tev)
- Ma se includiamo la sistematica, S/B a LHC scende da 3.3 a 1.9 e il canale
- Diventa marginale per la scoperta.

Campo di Higgs e energia del vuoto $V(\phi) = \mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2$ $\frac{\partial V}{\partial (\phi^+ \phi)} = 0 \Longrightarrow \mu^2 + 2\lambda(\phi^+ \phi) = 0 \Longrightarrow$ Il potenziale di Higgs: $\Rightarrow ho \ un \ \min \ se \ \mu^2 < 0 \ a \ \phi^+ \phi = -\frac{\mu^2}{2\lambda} = \frac{v^2}{2}$ Il valore del potenziale al minimo vale: $V_0 = -\frac{\lambda v^4}{2}$ Ma v e' legato a M_W: $v = \frac{2M_W}{2} \sim 246 \text{ GeV} \Rightarrow V_0 = 2 \cdot 10^9 \lambda \text{ GeV}^4$ g_{W} La densita' di <u>materia visibile</u> nell'universo e' $\approx \frac{1p}{m^3}$ e quella totale ≈ 100 quella visibile : densita' di energia totale $\approx 10^{-4} \frac{GeV}{cm^3}$ $1 \text{ GeV}^{-1} = 0.2 \cdot 10^{-13} \text{ cm} \Rightarrow 1 \text{ GeV}^3 = 1.3 \cdot 10^{41} \text{ cm}^{-3}$ Se $\lambda \sim 1$ l'energia del campo di Higgs: $V_0 \sim 2.6 \cdot 10^{50} \, GeV / cm^3$ 54 ordini di grandezza piu' grande della densita' di energia osservata

Possiamo sempre aggiungere una costante in modo da cancellare V_0 ma questa costante deve essere "calibrata" a livello di 1 parte su 10^{54} !!!

Bibliografia

Barger.Phillips: "Collider physics", Addison Wesley;

R.K.Ellis et al.: "QCD and collider physics", Cambridge University press;

J.Gunion et al. "The Higgs hunter guide", Addison Wesley;

ATLAS & CMS Physics TDR (disponibili sul sito del CERN).