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Shock waves

Relativistic jets from Active Galactic Nuclei

Supersonic aircraft

A shock wave is characterised by a nearly discontinuous change in
pressure, temperature and density of the medium.
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of the incoming flow
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Shock waves

Relativistic jets from Active Galactic Nuclei

Supersonic aircraft

A shock wave is characterised by a nearly discontinuous change in
pressure, temperature and density of the medium.

What is the main difference between these shocks ?

Mechanism acting at the shock front
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The shock front is mediated by :

Collisions Magnetic turbulence

Typical scale length of the shock front :
Lfﬁ)\mfp Lf:c/wp < >\mfp
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Astrophysical collisionless shocks

Shock waves are common in astrophysical environments.

o Relativistic jets from Active Galactic Nuclei e SuperNova Remnants
composition: ~ pair plasma composition: ~ electron-ion plasma

velocity: y~45 velocity: v~0.1c
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Astrophysical collisionless shocks

Shock waves are common in astrophysical environments.

Collisionless shocks are associated with extremely high energy particle production.
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Astrophysical collisionless shocks

Shock waves are common in astrophysical environments.

Collisionless shocks are associated with extremely high energy particle production.

How we approach the problem ?
® No in-situ measurements

® Reproduce the shock in laser-plasma experiments

® Simulate the shock with Particle-In-Cell code
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Outline

e What creates the magnetic turbulences ?

® How is the shock created ?

® Experiments currently investigated

® New proposal for future experiments

® Conclusion and perspective



Filamentation of current and magnetic field
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e Instability driven by two relativistic
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Filamentation of current and magnetic field

e Instability driven by two relativistic

counterstreaming beams.

2 A
No Vo
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e Particles moving in opposite directions
concentrate in spatially separated By
A :
current filaments.
Nno {vVo

e The magnetic field created by the

current filaments increases the

initial perturbation.
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From the turbulence to the shock formation

Counterstreaming beams
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From the turbulence to the shock formation

Counterstreaming beams
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® The magnetic field generated
in the overlapping region stops the particles



From the turbulence to the shock formation
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From the turbulence to the shock formation

Counterstreaming beams 2D simulation with pair plasma
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How long is this phase ?

Evolution in time of the magnetic field amplitude

+
Trajectories of electrons

Time

* The magnetic field amplitude to trap electrons and positrons is the same.



How long is this phase ?

Evolution in time of the magnetic field amplitude

+
Trajectories of electrons Trajectories of protons

Time Time

* The magnetic field amplitude to trap electrons and positrons is the same.

e lons are not deflected efficiently. Additional time is required to develop ion filaments.



Experiment of e-/ion counterstreaming plasma

Configuration already tested at OMEGA and NIF

new generation of high-energy (~kJ)
high intensity (~PW) lasers
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Theoretical and numerical model

Experimental configuration
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The model suggests that the distance between
the targets should be ~7 times larger.



Theoretical and numerical model

Experimental configuration
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V/ Evidence of filaments formation

8 Still far from the shock formation

Numerical and Theoretical

configuration
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X Ruyer, PRL vol.117 (2016).

The model suggests that the distance between
the targets should be ~7 times larger.

We performed simulations with a
realistic density and velocity profile

}

Filaments formation is drastically slowed down.

No evidence of shock formation.



New suggested configuration

An intense laser pulse interacting with a solid target
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The laser pulse acts as a piston, pushing surface of the plasma.
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New suggested configuration

An intense laser pulse interacting with a solid target
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The laser pulse acts as a piston, pushing surface of the plasma.
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New suggested configuration

An intense laser pulse interacting with a solid target
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Filamentation of current and magnetic field
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Filamentation of current and magnetic field
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Simulation Parameters

I ~5x%x 102" Wem ™2

Mz‘ — 100m6

vgp =~ 0.38c

To carry out the simulation
the ion mass in artificially reduced !



Collisionless shock formation
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Collisionless shock formation

Ion density
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Formation time
with the real ion mass

tr ~ 30 ps

This laser facility
is not yet available!




Ditferent laser polarizations

o 3
7
6
2
s 5 S . L
< 4 5 e Varying the laser polarisation,
3 1 ° we can control the rippling at
2
. the surface.
0
X 0
8
;
6
5
S 4
3
2
1
0 e e it b !
35 40 a5 50 0

8
7
6
-5 2 3
< 4 <
3 S
; 1
1
% 0



Angle of incidence

For experimental purpose is important to have non-normal incidence.
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¢ Increasing the angle of incidence
the surface remains flat for longer time.



Conclusion and Future Works

e Increasing interest in the study of this kind of shock

e Great challenge from both numerical and experimental points of view

e What can we do to make our configuration reproducible in the lab ?
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Conclusion and Future Works

e Increasing interest in the study of this kind of shock

e Great challenge from both numerical and experimental points of view

e What can we do to make our configuration reproducible in the lab ?

e Find a scaling to decrease the laser intensity

® Add an external magnetic field \
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Conclusion and Future Works

e Increasing interest in the study of this kind of shock

e Great challenge from both numerical and experimental points of view

e What can we do to make our configuration reproducible in the lab ?

e Find a scaling to decrease the laser intensity

® Add an external magnetic field

Thanks for the attention !







Why are these shocks interesting ?

Collisionless shocks are associated with extremely high energy particle production.

Cosmic ray acceleration via Fermi mechanism Kinetic energy up to

Shock E; ~10"GeV

upstream downstream

We would like to investigate
Turbulence

the first phase of the shock formation
&
the injection mechanism



Particle-In-Cell code
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SMILEI (Simulating Matter Irradiated by Light at Extreme Intensities)

I Open-source Particle-In-Cell code developed in C++
milei)  1D3V and 2D3V cartesian geometry
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