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Phase space in Quantum

Mechanics: the Wigner function



A jump start of the Wigner function

The quantum transition of a particle from x ′ to x ′′ is described by

the density matrix element 〈x ′ | ρ̂ | x ′′〉, or equivalently by the

Wigner function:

Definition of Wigner function

W (x , p) =

∫ +∞

−∞

dξ

2π
e−ipξ

〈
x +

ξ

2

∣∣∣∣ ρ̂ ∣∣∣∣ x − ξ

2

〉
.

The variables x ≡ (x ′ + x ′′)/2 and p (conjugate to

ξ ≡ (x ′′ − x ′)/2) span the phase space in which the W (x , p) lives.

Wigner function of a pure state

W (x , p) =

∫ +∞

−∞

dξ

2π
e−ipξψ∗(x − ξ/2)ψ(x + ξ/2) .
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(Some) Properties of the Wigner function

Marginals

Marginalizing in x and p respectively provides momentum and position

distributions:

W (x) ≡
∫
dx W (x , p) = 〈x | ρ̂ | x〉 , W (p) ≡

∫
dpW (x , p) = 〈p | ρ̂ | p〉 .

Trace-product rule

Tr(ρ̂1ρ̂2) = 2π

∫
dx dpWρ̂1(x , p)Wρ̂2(x , p) .

Two important corollaries of the trace-product rule:

I Cannot squeeze a state to a phase space domain smaller than 2π}:

2π} ≤ 1∫
dx dpW 2(x , p)

.

I The Wigner function is real and can take on negative values.
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A (quasi)probability distribution

The Wigner function efficiently bridges QM and Statistical Physics. It

highlights striking similarities. . .

Averages

In QM, 〈A〉 ≡ Tr(Âρ̂). Wigner transforming Â→ A(x , p) and using the

trace product rule, W plays the role of a probability distribution:〈
Â
〉

=

∫
dx dp A(x , p)W (x , p) .

Time evolution

The operator equation dρ̂/dt = −i [Ĥ, ρ̂], with Ĥ = p̂2/(2m) + U(x̂),

becomes a c-number equation for W (x , p):

L ·W (x , p, t) =
∞∑
`=1

(−1)`(}/2)2`+1

(2`+ 1)!

d2`+1

dx2`+1
U(x)

∂2`+1

∂p2`+1
W (x , p, t) ,

where L is the Liouville operator associated to Ĥ.
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A (quasi)probability distribution

The Wigner function efficiently bridges QM and Statistical Physics. It

highlights striking similarities but also important differences:

I Quantum interference effects can make W negative.

I W does not satisfy the Lioville equation LW (x , p) = 0 because of

quantum corrections.

These non-classicalities are absent in important situations:

I For pure states, W is positive only if they are Gaussian

(Hudson-Piquet theorem). E.g.: coherent and squeezed states.

I If U is at most quadratic in x̂ , the time evolution of W is entirely

classical.
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A gallery of Wigner functions: number states

Vacuum state

Number state (n = 4)
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A gallery of Wigner functions: coherent and squeezed states

Coherent state

Squeezed state
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A gallery of Wigner functions: Schrödinger cat state

Schrödinger cat state: |ψ〉 = N/
√

2
(
|αe iϕ〉+ |αe−iϕ〉

)
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Applications



Quantum state reconstruction: the theoretical side

The Wigner function encodes all the physical properties of a quantum

system.

Q: Is it possible to reconstruct it via a set of appropriate distributions?

A: Yes.

It is a two-step procedure:

1. Compute the Wigner function W|Xθ〉 of the eigenstate |Xθ〉 of the

quadrature operator X̂θ ≡ cos θx̂ + sin θp̂.

2. Use the trace-product rule and a Radon transformation to get Wρ̂ in

terms of W (Xθ) ≡ Tr(|Xθ〉 〈Xθ| ρ̂):

Wρ̂(x , p) =
1

4π2

∫
dt|t|

∫ π/2

−π/2
dθ

∫
dXθe

it(Xθ−x cos θ−p sin θ)W (Xθ) .
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Quantum state reconstruction: the experimental side

The Wigner function encodes all the

physical properties of a quantum system.

Q: Is it possible to experimentally

reconstruct it via a set of appropriate

measurements?

A: Yes: in the Quantum Optics jargon, it

is called homodyne tomography.

It is three-step procedure:

1. Inject the desired light state and a strongly classical coherent light

|αe iθ〉 in a homodyne detector measuring W (n21) 'W (Xθ)/(
√

2|α|).

2. Vary θ in N steps from −π/2 to π/2, and obtain a sequence of

distributions {W (Xθ1), . . . ,W (XθN )}.
3. Use this sampling of W (Xθ) to numerically gain Wρ̂ from the Radon

transform above.
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QHD: Generalities

I Quantum kinetic theory encodes a large amount of information in the

quantum Boltzmann equation. Extracting it, though, is very painful.

I One needs simplified models containing only the necessary physical

information: QHD.

QHD models are constructed by taking moments of the quantum

Boltzmann equation.

Advantages One can recover physically relevant quantities:

n(x , t) =

∫
dv W (x , v , t) , u(x , t) = n−1

∫
dv vW (x , v , t) ,

p(x , t) = m

(∫
dv v2W (x , v , t)− n(x , t)u2(x , t)

)
, . . .

Drawbacks One has to provide a closure approximation to truncate the

resulting hierarchy.
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QHD: A fluid model for a quantum electron gas

A gas of non-relativistic, collisionless quantum electrons can be efficiently

described by a single-particle QHD model. The first two moments at

O(}) of the quantum Boltzmann equation read

∂n

∂t
+

∂

∂x
(nu) = 0 ,

∂u

∂t
+ u

∂u

∂x
=

e

m

∂φ

∂x
− 1

mn

∂p

∂x
.

I φ is the electrostatic potential, satisfying the Poisson equation

∂2φ

∂x2
=

e

ε0

(∫
dv W (x , v , t)− n0

)
.

I p is the pressure, composed by a classical and a quantum contribution,

pc and pq. It can be related to n by making an “equal amplitude

approximation” [3] (closure approximation).

Dispersion relations

This QHD model matches the Wigner-Poisson prediction for the

dispersion relation of linear plasma perturbations. Same result, less effort.
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Deformation quantization: basics

(x , p)

Γ

{·, ·}

(x̂ , p̂)

H

[·, ·]

canonical

quantization

Classical Quantum

Moyal ? product

The Wigner-Weyl correspondence

induces the Moyal product:

f (x , p) ?M g(x , p)

≡ f

(
x +

i}
2

→
∂x , p −

i}
2

→
∂p

)
g(x , p) .

Deformation quantization

Similar to canonical quantization,

but “gentler”:
I No operators, only c-number

functions.

I Operator non-commutativity

encoded in a ? product:

f ? g ≡
∞∑
n=0

(i})nCn(f , g) ,

f · g ≡ C0 ,

{f , g} ≡ C1(f , g)− C1(g , f ) .

I } is a deformation parameter:

[f , g ]? ≡ f ? g − g ? f

= i}{f , g}+O(}2) .
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Deformation quantization: FRW cosmology

I Quantizing cosmological models is easier because one can resort to

symmetry reduction. At the practical level, this means simpler

constraint equations.

I In the deformation quantization scheme, [4] solved the Hamiltonian

constraint H(x , p) ?M W (x , p) = 0 in a radiation-dust filled Universe:

I The most probable solutions have a

Ω̃r different to the classical one:

Ω̃r = Ωr − (Ωm/2)2/3an ,

an such that dAi(−ξ)/ dξ|ξ=an = 0.

I Good match with classical results

for large scale factor: quantum

effects observable only for small x .

I x = 0 is no more a singular point.
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Conclusions

Main advantages of the phase space Wigner function approach

I More concrete description of states and c-number equations.

I Strong connection between quantum mechanics and kinetic theory.

Applications

Relativistic
systems

QED
plasma

Quark-
gluon
plasma

Quantum
gravity?

. . .

Non-
relativistic
systems

Quantum
optics

Quantum
infor-
mation

Quantum
plasma
physics

Quantum
elec-

tronics

Quantum
chem-
istry

. . .

Deformation
quantization

of FRW
cosmology
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