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Phase space in Quantum
Mechanics: the Wigner function




A jump start of the Wigner function

The quantum transition of a particle from x’ to x” is described by
the density matrix element (x" | p | x/), or equivalently by the
Wigner function:

Definition of Wigner function
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The variables x = (x’ + x”)/2 and p (conjugate to
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& = (x"" — x")/2) span the phase space in which the W(x, p) lives.
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(Some) Properties of the Wigner function

Marginals

Marginalizing in x and p respectively provides momentum and position
distributions:

W(x)z/dxvv<x,p)=<x\ﬁ|x>, W(p)E/de(X,p)=<p|ﬁ|p>~

Trace-product rule

Tr(p1p2) = 2w /dx dp W, (x, p)W;,(x, p) .

Two important corollaries of the trace-product rule:

» Cannot squeeze a state to a phase space domain smaller than 27h:

1

2th< —————— .
T ~ [dxdp W2(x, p)

The Wigner function is real and can take on values.



A (quasi)probability distribution

The Wigner function efficiently bridges QM and Statistical Physics.

Averages

In QM, (A) = Tr(Ap). Wigner transforming A — A(x, p) and using the
trace product rule, W plays the role of a probability distribution:

</A\> = /dxdpA(X, p)W(x, p).

Time evolution

The operator equation dp/dt = —i[H, ], with H = p2/(2m) + U(%),
becomes a c-number equation for W(x, p):

o h/2)2(+1 d2€+1 82€+1

i X Pt Z 26 + 1 dx26+1 U(X) 8p2g+1 W(X7 P, t) )
=1

where L is the Liouville operator associated to A.



A (quasi)probability d

The Wigner function efficiently bridges QM and Statistical Physics. It

highlights striking similarities but also important differences:

> Quantum interference effects can make W negative.

> W does not satisfy the Lioville equation LW(x, p) = 0 because of
quantum corrections.

These non-classicalities are absent in important situations:

» For pure states, W is positive only if they are Gaussian
(Hudson-Piquet theorem). E.g.: coherent and squeezed states.

» If U is at most quadratic in X, the time evolution of W is entirely
classical.



A gallery of Wigner functions: number states

Vacuum state




A gallery of Wigner functions: coherent and squeezed states

Coherent state
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A gallery of Wigner functions: Schréodinger cat state

Schrédinger cat state: 1) = N/V/2 (|ae®) + |ae™%))
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Applications




Quantum state reconstruction: the theoretical side

The Wigner function encodes all the physical properties of a quantum

system.

Q: Is it possible to reconstruct it via a set of appropriate distributions?

A: Yes.
It is a two-step procedure:

1. Compute the Wigner function Wx,, of the eigenstate |Xy) of the
quadrature operator Xy = cos 0% + sin 0p.

2. Use the trace-product rule and a Radon transformation to get W} in
terms of W (Xyp) = Tr(| Xg) (Xo| p):

Wj(x, p) = /dt|t| /2d9/dX9e (Xo—xcos0=psin0) y/(X,) .
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Quantum state reconstruction: the experimental side

The Wigner function encodes all the

Subtractor
physical properties of a quantum system.
Q: Is it possible to experimentally

reconstruct it via a set of appropriate

measurements? Source Sigoal

Strong Local Oscillator

A: Yes: in the Quantum Optics jargon, it
is called homodyne tomography.

It is three-step procedure:

1. Inject the desired light state and a strongly classical coherent light
|e’®) in a homodyne detector measuring W (n21) ~ W(Xp)/(v/2|a|).

2. Vary 0 in N steps from —m/2 to w/2, and obtain a sequence of
distributions {W(Xy,), ..., W(Xg,)}

3. Use this sampling of W(Xy) to numerically gain W; from the Radon

transform above.



QHD: Generalities

» Quantum kinetic theory encodes a large amount of information in the
quantum Boltzmann equation. Extracting it, though, is very painful.

> One needs simplified models containing only the necessary physical
information: QHD.

QHD models are constructed by taking moments of the quantum
Boltzmann equation.

Advantages One can recover physically relevant quantities:
n(x,t) = /dv W(x,v,t), u(x,t)=n"1 /dv vIW(x, v, t),
p(x,t) =m </dv V2W(x, v, t) — n(x, t)u?(x, t)) ,

Drawbacks One has to provide a closure approximation to truncate the
resulting hierarchy.
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QHD: A fluid model for a quantum electron gas

A gas of non-relativistic, collisionless quantum electrons can be efficiently
described by a single-particle QHD model. The first two moments at
O(h) of the quantum Boltzmann equation read

dn 0 B ou Ou e do 1 0p
™M= Gt T A mnax

> ¢ is the electrostatic potential, satisfying the Poisson equation

e

> pis the pressure, composed by a classical and a quantum contribution,
pc and pg. It can be related to n by making an “equal amplitude
approximation” [3] (closure approximation).

This QHD model matches the Wigner-Poisson prediction for the
dispersion relation of linear plasma perturbations. Same result, less effort.
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Deformation quantization: basics

Deformation quantization

Similar to canonical quantization,

Classical Quantum but “gentler”:
(x,p) (%, p) , only c-number
canonical functions.
r — .
quantization Operator non-commutativity
{»} [] encoded in a
f*g = Z(lﬁ)ncn(f7g) )
The Wigner-Wey! correspondence f-g=Co,
induces the Moyal product: {f.g} = Glf,g) — Glg,f).
f(x, p) *m g(x, p) hiis a
SN _— B
zf<x+’2hax,p_’fap)g(x,p)_ [f.gli=fxg—gxf

= ih{f,g} + O(h?).
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Deformation quantization: FRW cosmology

» Quantizing cosmological models is easier because one can resort to
symmetry reduction. At the practical level, this means simpler

constraint equations.

> In the deformation quantization scheme, [4] solved the Hamiltonian
constraint H(x, p) xp W(x, p) = 0 in a radiation-dust filled Universe:

» The most probable solutions have a
€, different to the classical one:

ﬁr =Q, - (Qm/z)z/aan’
a, such that dAi(—¢)/ d€le=,, = 0.

» Good match with classical results
for large scale factor: quantum
effects observable only for small x.

» x = 0 is no more a singular point.
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Conclusions




Conclusions

» More concrete description of states and c-number equations.

> Strong connection between quantum mechanics and kinetic theory.
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