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climate: statistical description of weather (“average weather”)
over a 30-years interval, defined by the mean and variability of:
temperature, humidity, atmospheric pressure, wind, precipitation | g

A climate system has 5 components:

atmosphere, hydrosphere, cryosphere, lithosphere and biosphere
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_____________________________________________
What is an atmospheric model?

essential tool for atmospheric science

A model is used to:
- make physical sense to experimental data
- explain physical mechanisms of atmospheric phenomena
- making predictions about systems for which measurements are

impracticable (“experimental approach”)

Always characterized by a
mathematical representation

requirement: consistency with all achievable measurements

experimental data as a feedback for models and viceversa



Important scales

Atmospheric processes encompass a wide range of scales

Spatial and Temporal Scales Example Process/Model
— Molecular (<< 2 mm, >min) Diffusion/Diffusion equation
— Microscale (2 mm - 2 km, hours) In cloud processes/thermodynamics

and microphysics

— Mesoscale (2 - 2000 km, hours to days) Tornadoes to Thunderstorms/
weather forecasts
— Synoptic (500 - 10,000 km, days to weeks) Climate System: anticyclones

cyclones, Fronts / regional to
hemispheric model

— Planetary (> 10,000 km, > weeks) atmosphere circulation /
Global circulation model



___________________________________________
Atmospheric predictability

model that predicts the deterministic evolution of the atmosphere:
“forecast model”
weather prediction (mesoscale)

BUT

The deterministic predictability of the atmosphere is limited by initial
conditions (Lorentz, 1969)

(two weeks, mesoscale)

¢

study of the statistics of the atmosphere

beyond the deterministic limit

e Ny

seasonal weather forecasts climate change forecasts



Climate change

change of the statistical distribution of weather patterns

which lasts for an extended period of time
Synoptic/planetary scale

time evolution of the statistics driven by
“external forcing”

4 N\

natural anthropogenic
(biotic processes, (greenhouse gas emissions,
variations in solar radiation, deforestation)

plate tectonics, volcanics eruptions,
Earth’s revolution)
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Physics of climate models

The physics of each atmospheric model starts from primitive equations:

1. Continuity equation: the conservation of (dry and water) mass.

2. Conservation of momentum: hydrodynamical atmospheric flow on
the Earth surface (Navier-Stokes equations)

3. Thermal energy equation: conservation of energy, it relates the
overall temperature of the system to heat sources and sinks

all partial differential equations
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Need of numerical simulations

Impossibility to solve the physical equations at any time and spatial point

« Simplification: focus on only the relevant processes
 Parametrization: expressing a process as a parameter, which is function
of at least two parameters
* Approximation: either physical and mathematical approximations
(finite-difference method, finite-element method, etc)

partial derivatives are substituted PDE are reduced to
with finite-difference quotients a system of algebraic equations

Solutions of the models are numbers rather than formulas:
Numerical model




Climate model of

the South-American monsoon system

“A deforestation-induced tipping point
for
the South-American monsoon system”

N. Boers et al.,
Scientific Reports 7, Article number: 41489 (2017)




Monsoon system

monsoon system: reversal in the low-level wind direction between
summer (wet) and winter (dry) seasons
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monsoon system: reversal in the low-level wind direction between
summer (wet) and winter (dry) seasons

g

e more than 43% of Earth’s population
(7,5 billion people, 2017)
lives In
MONSOO0N regions

8 £ 8§ 8 8 3 8 38
(210, [EIRITY JO 102053

A

g
[

at the end of 21st century
it will be 50%
of a population of 10 billion people
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Climate change in these regions
are crucial
for food and health security

L. M. V. de Carvalho, |. F. A. Cavalcanti,
“The South American Monsoon System”




The South-American monsoon system (SAMS)

Solar Radiation

S\ C————mmpp N E thermal gradient |
between ocean and continent
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Water Vapor B Deep Convection pressure gradient
Transport =~ ,F § < ‘ ~——~— l
subcenee : j [~ ) | low-level moist air inflow

from the ocean
(South Atlantic convergence zone)

____________________ ' i | , ' moist winds
cross the Amazon basin

and are blocked by the Andes
Atlantic (Bolivian High)

!

a Low-Level Jet transports
moisture to the subtropics

L. M. V. de Carvalho, |. F. A. Cavalcanti,
“The South American Monsoon System”
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Current situation in the Amazon basin
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Current situation in the Amazon basin

Amazon basin:
40% (7,500,000 km?2) of the South-American continent
Amazon rainforest:
world largest rainforest (5,500,000 km?2)
Amazon river:
world largest and longest (6,992 km) river

about 20% of the rainforest surface (before 1970) has been deforested

(Butler, Rhett A., Calculating deformation figures for the Amazon)
impacts in carbon, energy and water fluxes

Fires and deforestation in the state of Rondobnia
for agriculture land or urban environment
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study of the South America-Atlantic ocean coupling

Atlantic moisture
reservoir

Amazon rainforest

N. Boers et al., Scientific Reports 7, (2017)
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Modeling deforestation effects on SAMS

how the SAMS will be affected by deforestation??

study of the South America- Atlantic ocean coupling

presence of positive feedback mechanism
condensational latent heat release (LH)

ocean-land atmospheric Atlantic moi_sture
heating gradient reservolr
precipitation

Amazon rainforest
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of moisture transport

N. Boers et al., Scientific Reports 7, (2017)



Modeling deforestation effects on SAMS

how the SAMS will be affected by deforestation??

study of the South America- Atlantic ocean coupling

breakdown  presence of positing fgedback mechanism
of the feedback condensational Igtén\heat release (LH)

ocean-land atmospheric Atlantic moi_sture
heating gradient reservolr
precipitation

Amazon rainforest
evapotranspiration

g AR

amplification
of moisture transport

external forcing:
deforestation N. Boers et al., Scientific Reports 7, (2017)




Physics of the SAMS model

Parametrization

Six observables: water cycle

atmospheric moisture content, A - - st A -
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Physics of the SAMS model

Parametrization

Six observables: water cycle

atmospheric moisture content, A - - st A -
soil moisture content, S (ECYCLED EERCITATION
evapotranspiration, E(S) PRECIPITATION

pl’eCipitation, P(A) EVAPORATION - :UNOFF
river run-off, R(S)
wind velocity, W

coupled non-linear partial differential equations:

—

conservation

due to heating gradient

water _»{(%A:E—P—ﬁ-l\/[

hS=P—-—FE—-R (dynamic)
— =g — —_trade - H /
where M = AW and W=W +W (A, E)
moisture flow f

due to trade wind (constant)
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Physics of the SAMS model

Discretization

Tropical Atlantic

10°

10°S

30°S

80°W 60°W 40°W 20°W

laminar atmospheric flow:
one-dimensional model
trajectory made of 100 boxes

conservative regime (wet season)
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Physics of the SAMS model

Discretization Approximation
E B L WWOAWD — W, (DA, ()
—— &‘ Aj(t+ 1) = A;(t) + Ei(t) — Pi(t) l
=B ’ 3 D Vi S,(t + 1) = S,(t) + Py(t) — E,(t) — R;(1)

| = box index

deforestation is simulated
by reducing
evapotranspiration E

10°S

reduction of latent heat release

|

decrease of heating gradient
between ocean and land

m(t) = (H) " — (H)*°

80°W 60°W 40°W 20°W l

moisture inflow reduction
WH o 7(t)

30°S

laminar atmospheric flow:
one-dimensional model

trajectory made of 100 boxes breakdown

. . when 7(t) = 0 of the feedback
conservative regime (wet season, DJF)
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Results of the model

Amplification Factor (AF): amplification of moisture inflow due to LH release
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Amplification Factor (AF): amplification of moisture inflow due to LH release
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Observations:

- strong dependence of P
on AF, E and
Atlantic heating

- for some values of AF,
existence of a threshold
for deforestation beyond
which P
rapidly decreases
to less than 60% of P
before deforestation

 Presence of a

hysteresis in the
deforestation-
reforestation cycle

solid lines:
deforestation process

dashed lines:
reforestation process
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Conclusions

« Atmospheric models are crucial for climate change predictions, they can work as
“numerical experiments”

« A state-of-art atmospheric model of the effect of Amazon deforestation on SAMS
IS presented.

The existence of a deforestation-induced tipping point for the SAMS is indicated.

« Crossing a threshold level of deforestation, precipitation reductions up to 40% in
non-deforested parts are predicted.

 The responsible physical mechanism is identified in the breakdown of a positive
feedback (i.e. latent heat release) to maintain sufficient level of moisture inflow
from ocean to land.

* Despite the precise values at which these transitions occur are model-
dependent, this study provides a conceptual basis for further investigations.
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