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We are interested in photon counting experiments
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photon statistics

The detection process has itself a statistical nature!



A one second long beam of laser light contains ~3 billions of photons
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A constant monocromatic light beam has a Poissonian statistics

— : _ Resonably good approximation
E(x’ t) EO Sm(kx Wl + 4)) for a single mode laser

Power of the beam is constant q (A7) is well defined
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A constant monocromatic light beam has a Poissonian statistics

— : _ Resonably good approximation
E(x’ t) EO Sm(kx Wl + 4)) for a single mode laser

Power of the beam is constant q (A7) is well defined
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The variance provides a benchmark
for classifying different types of light
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The distribution is uniquely
characterised by the mean value

It has variance
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Chaotic light has a super-Poissonian statistics

Discharge lamp

e Natural broadening
e Collisional broadening

e Doppler broadening

Existence of a coherence time tc

partially coherent light
not perfectly monochromatic, ?
slightly fluctuating intensity

on a tc time-scale



Chaotic light has a super-Poissonian statistics

Discharge lamp

e Natural broadening
e Collisional broadening

e Doppler broadening

Existence of a coherence time 1tc

photon count rate

r1+AT
partially coherent light — N 4/
not perfectly monochromatic, W(A7) n O(¢')dt
slightly fluctuating intensity v1
on a tc time-scale (An)2 = (W(AT)) + <AW(AT)2>

1
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A sigle mode of black-body radiation has a super-Poissonian statistics
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Sub-Poissonian light has to be more stable
than a perfectly coherent light
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The observation of sub-Poissonian light is
a direct evidence of the quantum nature of light
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Use a sub-Poissonian source to generate sub-Poissonian light

M.C. Teich and B. E. A. Saleh, J. Opt. Soc. Am. B 2, 275 (1985)

the observed variance was only :
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* inefficiency of emission (25%) Hg atoms
* imperfect optics transition (83%) 2,
* imperfect photon collection (10%) \\—j\ Space charge

low efficiency of the detector (15%)

M.C. Teich and B. E. A. Saleh, J. Opt. Soc. Am. B 2, 275 (1985)
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Hambury Brown-Twist experimental setup and correlation functions
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Second order correlation function for classical fields
Is bounded to be greater or equal to 1
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The form of the second-order correlation function for chaotic light
can be calculated assuming simple model for the source
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Number of Coincidence Events

Thermal and chaotic light present
the phenomenon of photon bunching
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Anti-bunched light is a purely quantum effect

-

9(2) (7-) =1 YV 1 Photons are distributed randomly in the beam

.

Photons are distributed evenly with long (2) ( ) _ 9
time intervals between each others g \7) =1




Anti-bunched light is a purely quantum effect
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Photons are distributed evenly with long (2) ( ) _ 9
time intervals between each others g T) ="

g? (7)

' g2 (0) < g ()

g (0) < 1

0 ! I ! ! > 7T In contrast with the classical result




The basic idea for generating anti-bunched light is to isolate an
individual emitting species
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The value of g@(t) is crucial in determining
the photon counting statistics

Considering the probability of detecting n photons in the time interval [z, ¢+ T7]

(Bn)) = () = ()P [ dr(T = 7)) = 1)

—T

g¥(r) >1 = super-Poissonian statistics

¢ (1) <1 = sub-Poissonian statistics

not the other way around ...



Anti-bunching and sub-Poissonian statistics are distinct phenomena

PHYSICAL REVIEW A VOLUME 41, NUMBER 1 1 JANUARY 1990

Photon-antibunching and sub-Poissonian photon statistics

X.T. Zou and L. Mandel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 19 April 1989)

It is shown by example that sub-Poissonian photon-counting statistics need not imply photon an-
tibunching, but can be accompanied by photon bunching, i.e., by the tendency of two photons to be
close together more frequently than further apart. Some comments on the relation between anti-
bunching and sub-Poissonian statistics are made.

One page paper:
a reference to an experiment ad a simple counter example to simply say “No”



