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Introduction
Main topic: thermodynamics (TD) in Josephson junctions

Starting point: inconsistency between expected TD and microscopical calculations

Solution: inverse proximity effect

Consequences/applications: heat capacity, TD processes and cycles
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SNS Josephson Junction
SNS Josephson junction  : two terminal electrical device

two superconducting part coupled by means of a normal metal

Stationary case : supercurrent flowing, NO voltage , NO dissipation

Flowing supercurrent determined by the condensate phase difference      

Current-phase relation 
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Thermodynamics of a Junction
Maxwell relation

The junction must be treated as thermodynamic system, with free energy differential

It holds the following Maxwell relation connecting entropy and current phase relation:
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Quantum of resistance

Temperature Junction phase drop

Junction entropy
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✔ Macroscopic phase

✘ Fundamental state

Supercurrent       transport

Entropy and supercurrent, 
Microscopic mechanism
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Quasi-particles Condensate

✘ No phase coherence

✔ Entropy and heat capacitance 

Heat transport

Phase coherence

Heat and entropy

Transport

Ref. 3, 4



In literature, for simplicity : quasi-classical theory and rigid boundary condition

Green function in normal region and BCS boundaries at SN interfaces

Proximity effect : the superconductor affects metal properties

Qualitative results : current phase relation and phase-dependent minigap

N SS

SNS junction : microscopical treatment
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RIGID BOUNDARIES RESULTS:

◦ Normal metal proximized by the superconductor

◦ Rigid Superconducting banks

◦ Minigap and supercurrent in the normal metal
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Experimental agreement

le Sueur et al., PRL 100, 197002 
(2008)

D’Ambrosio et al. , 
Appl. Phys. Lett. 107

113110 (2015)
Götz et al., 

PRB. 62 R14645 (2000)
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The thermodynamic inconsistency
The rigid boundary conditions results are not consistent with the Maxwell relation
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Inverse proximity model
Inverse proximity effect : the normal region affects the superconductor

Part of the entropy variation comes from the superconducting part
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INVERSE PROXIMITY RESULTS:

◦ Superconductor and metal are mutually influenced

◦ The DoS in the superconductor is phase-dependent

Gap

Gapless



Thermodynamic consistency of the result

Including the inverse proximity effect : Maxwell consistence recovered

Inverse proximity effect is the main mechanism of entropy modulation
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Normal part
contribution

SupCond part
contribution
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Entropy and heat capacity variations
Inverse proximity contribution -> greater amount of tuned-entropy -> enhanced thermodynamic effects
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Iso-entropic process
A quasi-static iso-entropic process does not exchange heat with the external world

Thermal isolation is not an easy task: required small volumes and low temperatures to suppress phonons heating

An iso-entropic process gives an exponential decrease of temperature. At low temperatures:
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SNS thermodynamic machine

Thermodynamic cycle composed of 
iso-entropic and iso-phasic processes.

The phase drop is tuned by an 
external magnetic field, 

Junction connected to thermal 
reservoirs by mean of valves.

iso-entropic
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Ambient
Cooled 

subsystem

heat heat

 Iso-entropic temperature decrease

 Iso-phasic heat absorption

 Iso-entropic temperature increase

 Iso-phasic heat release

Cooling cycle



Experimental feasibility
An experimental observation of these effects is very challenging: requires small device volumes 
and high junction current. 

In order of difficulty in experimental realization:

The variation of specific heat is the simplest to observe. A variation of 70% is predicted at 
temperature , volume   and critical current

The isoentropic cooling is more complex to observe, due to the phonon heating. In this case, 
the iso-entropic process must be very fast (less than 10ps)

The cooler requires the thermal valves and sincronisation of the parts -> very hard to realise.
Calculated that at the cooling power is
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Conclusions
Quasi-classical treatment in rigid boundaries yields a thermodynamic inconsistency with 
Maxwell relations

Inverse proximity effect is the main mechanism of the entropy dependence on phase 
across the junction

The phase dependence of the entropy can be exploited to implement iso-entropic cooling 
of the junction

A thermodynamic machine can be realized by the combination of iso-entropic and iso-
phasic processes
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Further developments
Consider different kinds of process: current-biased, isothermal, different cycles

Explore different kind of junctions: balistic SNS, ferromagnet, semiconductor

Explore different kind of external variables: current, electric field

19



Thank you for the attention!
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The work presented has been developed in collaboration with Matteo Carrega, 
Pauli Virtanen, Alessandro Braggio, Elia Strambini and Francesco Giazotto, from 
superconductivity group in NEST laboratories in Pisa.
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Backup slides
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Quasi-classical theory

The statistical theory for a hybrid diffusive system in equilibrium: QUASI-CLASSICAL THEORY OF THE 
SUPERCONDUCTIVITY

In this theory, the information about quasi-particle DoS and supercurrent transport is stored in a 
momentum-averaged Green function, that is a matrix in the Nambu space

and obeys the Usadel equation

Further boundary conditions describe the geometry of the problem.

From the Green function it can be EXTRACTED QUASI-PARTICLE DOS AND FLOWING SUPERCURRENT
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Example: entropy in bulk superconductor

According the quasi-classical theory (already in BCS theory) the 
Density of States of the quasi-particles is

The entropy is

The specific heat is 
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Analytical solutions for SNS junction
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