Medium baseline neutrino oscillation searches

LSND: $\overline{\nu_{\mu}}$ $\overline{\nu_{e}}$ 20 < E_{ν} < 60 MeV μ^{+} decay at rest ν_{μ} ν_{e} 20 < E_{ν} < 200 MeV π^{+} decay in flight Final results, 1993-98 data event excess, evidence for oscillations

KARMEN: $\overline{\nu_{\mu}}$ $\overline{\nu_{e}}$ 20 < E_{ν} < 60 MeV μ^{+} decay at rest Results based on 75% of expected data, Feb 97 - Mar (Nov) 00 experiment ended March 2001 no excess, does not confirm LSND, but does not rule it out either

MiniBooNE: V_{μ} V_e 500 < E_v <1500 MeV

Under construction first data summer 2002

8 GeV protons, 3 GeV π^+

no B-field, e and sequence distinguishes e^+ from e^-

LNSD Results

 $R_{\gamma} > 10$ and $20 < E_e < 60 \,\text{MeV}$

KARMEN Results

MiniBooNE

At Fermilab starting soon.....

- Search for $v_{\mu} = v_e$ appearance
 - ν_{μ} disappearance

With *L/E*~1 (same as LSND) but at order-of-magnitude higher energies

Medium Baseline Summary

LSND observes appearance of $v_{\mu} = v_e$ oscillations at relatively high m^2 and low mixing angle

KARMEN does not confirm LSND, but does not rule it out.

 $\Delta m^2 (eV^2)$ Cyan is final LSND 90% Conf. Yellow, 99% MiniBooNE will start collecting data in summer 2002, and 10-1 will make a definitive statement 10²¹ POT, NEURAL NET RECON, 1 GeV CUT about LSND after two years. 10^{-2} SENSITIVITY SHOWN IN PROPOSAL 90% Conf Sensitivity 10^{-3} 10⁻² 10^{-3} 10^{-1}

 $sin^2 2\vartheta$

Summary

Most people ignore LSND result From Solar and Atmospheric results situation is clarifying:

$${
m SMA}: \qquad \Delta m_{\odot}^2 \simeq (4-10) \cdot 10^{-6} \ {
m eV}^2 \, ,$$

LMA:
$$\Delta m_{\odot}^2 \simeq (2-20) \cdot 10^{-5} \text{ eV}^2$$
,

VO:
$$\Delta m_{\odot}^2 \simeq (0.5 - 5) \cdot 10^{-10} \text{ eV}^2$$
,

Atm :
$$\Delta m_{atm}^2 \simeq (2-6) \cdot 10^{-3} \text{ eV}^2$$
,

$$\sin^2 2\theta_\odot \simeq (0.1 - 1.0)$$

 $\sin^2 2\theta_\odot \simeq 0.65 - 0.97$
 $\sin^2 2\theta_\odot \simeq 0.6 - 1.0$
 $\sin^2 2\theta_{atm} \simeq 0.82 - 1.0$

Possible Neutrino Masses and Mixings

The European Long Baseline Program

Detection of the $\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$ **signal and background rejection**

 OPERA:
 Observation of the decay "signature" at microscopic scale (à la CHORUS)
 Deca

 at microscopic scale
 (à la CHORUS)
 Image: Comparison of the decay "signature" (a la CHORUS)
 Image: Comparison of the decay "signature" (b la chorus of the decay (b la chorus of the de

The OPERA experiment

Brick (56 Pb/Emulsions. "cells")

The experimental technique

- Emulsion Cloud Chamber (ECC) (emulsions for tracking, passive material as target)
 - Basic technique works
 - charmed "X-particle" first observed in cosmic rays (1971)
 - DONUT/FNAL beam-dump experiment: events observed

- $\Delta m^2 = (1.6 4) \times 10^{-3} \text{ eV}^2$ (SuperK) $\rightarrow M_{\text{target}} \sim 2 \text{ kton}$ of "compact" ECC (baseline)
 - large detector sensitivity, complexity
 - modular structure ("bricks"): basic performance is preserved
- **Ongoing developments**, required by the large vertex detector mass:
 - industrially produced emulsion films
 - automatic scanning microscopes with ultra high-speed

Experience with emulsions and/or ν_{τ} searches : E531, CHORUS, NOMAD and DONUT

Sensitivity to $\mu \rightarrow$

oscillations

Summary of detection efficiencies

(in % and including BR)						
Decay mode	DIS long	QE long	DIS short	Overall		
τ ♦ e	3.0	2.6	1.3	3.7		
τ♦ μ	2.7	2.8	-	2.7		
$\tau \blacklozenge h$	2.2	2.8	-	2.3		
Total	8.0	8.3	1.3	8.7		

Expected events (2.25x10²⁰ pot, 1.8KTon, accounting for removed bricks) $m^{2}(10^{-3} \text{ eV}^{2})$

^τ decay	1.6	2.5	4.0	b.g.
е	1.9	4.7	11.8	0.19
μ	1.5	3.5	8.8	0.13
h	1.3	3.0	7.6	0.25
Total	4.7	11.2	28.2	0.57
			2 2	

 $\int_{10^{-1}}^{10^{-1}} OPERA$ $\int_{10^{-2}}^{10^{-2}} Syears$ $\int_{10^{-2}}^{10^{-2}} Super-K 90\% CL$ $\int_{10^{-3}}^{10^{-2}} V_{\tau}$ $\int_{10^{-2}}^{10^{-1}} 10^{-1}$

After 5 years data taking $\Delta m^2 = 1.2x10^{-3} \text{ eV}^2 \text{ at full mixing}$ $\sin^2(2\theta) = 6.0x10^{-3} \text{ at large } \Delta m^2$

 $\sin^2 2\theta$

Events $(\Delta m^2)^2$

The ICARUS experiment

C.R. shower from 3 ton prototype

The ICARUS Liquid Ar Time Projection Chamber

Focussing optics.

• Event reconstruction in 3D with measurement of the primary ionization

- 1. drift time
- 2. induction wires
- 3. collection wires

•Space resolution around 1 mm

•Maximum drift length in the Liq. Ar 1.5 m in the 600 ton module (requiring < 0.1 ppb O₂ equiv. impurities)

•Calorimetric energy resolution:

$\frac{\sigma(E)}{E}$	$\frac{0.03}{\sqrt{E}}$ (<i>Em</i> .)
$\frac{\sigma(E)}{E}$	$\frac{0.12}{\sqrt{E}}$ (Hadr.)

oscillations (Icarus)

- μ
- Analysis of the electron sample
 - Exploit the small intrinsic $_{e}$ contamination of the beam (0.8% of $_{\mu}$ CC)
 - Exploit the unique e/ 0 separation

Atmospheric Neutrinos Oscillations in ANTARES

JHF-to-SK Neutrino Project

• $\nu\mu_ \nu x$ disappearance _ $m_{23}^2 10^{-4} eV^2$, _ $sin^{22} 2_3 0.01$ • $\nu\mu_ \nu e$ appearance $sin^{22} 1_3 0.01$ •NC measurement $\mu - \pi/\mu - s$

MNS Matrix and Parameters

13/

23

 m_{21}^2, m_{32}^2

• MNS mixing matrix

$$\begin{array}{rcl}
\mathbf{v}_{e} & c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} & \mathbf{v}_{1} \\
\mathbf{v}_{\mu} &= -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} & \mathbf{v}_{2} \\
\mathbf{v}_{\tau} & s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} & \mathbf{v}_{3}
\end{array}$$

three mixing parameters δ
 violating phase
 mass-squared differences

CP Violation

Neutrino Oscillations

Situation rapidly developing

LSND result a mystery - to be resolved by MiniBoone

Longbase experiments in progress

Neutrino Factories being proposed