Neutrino Oscillations and Astroparticle Physics (1)

John Carr

Centre de Physique des Particules de Marseille (IN2P3/CNRS)

Pisa, 6 May 2002

- Introduction to Astroparticle Physics Neutrinos
 - Number
 - Dirac and Majorana Neutrinos
 - Mass Measurements
 - Double Beta Decay
 - Mixing
- **k** Neutrino Oscillations
- Cosmology
- **m** Dark Matter
- **n** High Energy Astronomy

What is Astroparticle physics ?

Story of the Universe

Make-up of Universe

Dark Matter Evidence :

Need to hold together Galaxy Clusters Explain Galaxy Rotation velocities

Astronomy object candidates :

Brown Dwarfs (stars mass <0.1 M_{sun} no fusion)

- some but not enough

White Dwarfs (final states of small stars)

- some but not enough

Neutron Stars/Black Holes (final states of big stars.)

- expected to be rarer than white dwarfs Gas clouds

- 75% visible matter in the universe, but observable

Particle Physics candidates:

Neutrinos

- Evidence for mass from oscillation, not enough for all Axions

- Difficult to detect

Neutralinos

- Particle Physicist Favourite !

Cosmic Rays

100 years after discovery by Hess origin still uncertain

Primary:

- p 80%, 9%, n8%
- e 2 %, heavy nuclei 1 % 0.1 %, 0.1 % ?

Secondary at ground level:

68 % µ 30 % p, n, ... 2 %

Particle Acceleration $\mathbf{E} \propto \mathbf{B}\mathbf{R}$

R 10 km, B 10 T E 10 TeV

Tycho SuperNova Remnant

R 10¹⁵km, B 10⁻¹⁰T E 1000 TeV

(NB. E Z Pb/Fe higher energy)

Particle Physics \Rightarrow **Particle Astrophysics**

Energy of particules accelerated

Ultra High Energy from Cosmic Rays

From laboratory accelerators From cosmic accelerators

Ultra High Energy Particles arrive from space for free: make use of them

Multi-Messanger Astronomy

 cut-off
 mean free path

 -rays:
 $+_{2.7k}$ >10¹⁴eV
 10 Mpc

 proton:
 $p +_{2.7k}$ $^{0} + X$ >5.10¹⁹eV
 50 Mpc

 nuclei:
 photo-disintegration
 >5.10¹⁹eV
 50 Mpc

 neutrinos:
 $+_{1.95K}$ Z+X
 >4.10²²eV
 (40 Gpc)

 $\Delta \theta(rad) = L(kpc) Z B(\mu G) / E(EeV)$ Galaxy B=2µG, Z=1, L=1kpc -> $\Delta \theta$ =12deg at 10¹⁹eV

Neutrino Mass in the Universe

Current knowledge of energy and mass distribution in the universe ($\Omega = 1$, flat) \rightarrow Big Bang theory: relic neutrinos: $N_{\nu} \approx 10^9 N_B$ Structure formation: $\rho_{\nu} < 0.15 \rho_c$

• $\Rightarrow 1/3 \sum_{i} m(\nu_i) < 2 \text{ eV}/c^2$ (for stable ν)

Neutrino mass (and mixing) concern:

- relic neutrinos, dark matter and evolution of the universe
- anisotropies of cosmic microwave background
- structure formation
- supernovae & r-process, ...

 \Rightarrow eV neutrino masses are very important

Neutrino History

- 1931 Predicted by Pauli
- 1934 Fermi develops a theory of radioactive decays and invents name neutrino
- 1959 Discovery of neutrino ($_{e}$) is announced by Cowan and Reines
- 1962 Experiments at Brookhaven and CERN discover the second neutrino: $_{\mu}$
- 1968 First evidence that solar neutrino rate half expectation: "solar neutrino problem"
- 1978 Tau particle is discovered at SLAC by Perl et al.: infer third neutrino
- 1985 First reports of a non-zero neutrino mass (still not confirmed)
- 1987 Kamiokande and IMB detect bursts of neutrinos from Supernova 1987A
- 1988 Kamiokande reports only 60% of the expected number of atmospheric $_{\mu}$
- 1989 Experiments at LEP determine three neutrinos from Z line width
- 1997 Super-Kamiokande see clear deficits of atmospheric $_{\mu}$ and solar $_{e}$
- 1998 The Super-Kamiokande announces evidence of non-zero neutrino mass
- 2000 DONUT experiment claims first observation of tau neutrinos

First observation of Neutrino

Reines and Cowan 1959:

Target made of 4001 water and cadmium chloride near reactor. The anti-neutrino coming from the nuclear reactor interacts with a proton of the target matter, giving a positron and a neutron. The positron annihilates with an electron of the surrounding material, giving two simultaneous photons and the neutron slows down until it is eventually captured by a cadmium nucleus, implying the emission of photons some 15 microseconds after those of the positron annihilation. All those photons are detected and the 15 microseconds identify the neutrino interaction.

Three Generations of Particles

At present only limits of absolute masses of neutrinos Oscillations give neutrino mass differences

Discovery of (?)

DONUT experiment, FNAL

Production of the neutrino beam :

neutrino beam : 5 % v_{τ} - 95 % v_{μ} , v_{e}

Direct observation of the v_{τ} :

 $v_{\tau} + N \rightarrow \tau^- + X$

- Detection of the v_{τ} Tau decay ٠ topology:
 - $\gamma c \tau \approx 2mm$ decay angle ≈ 50 mrać
 - 86 % of its decays produce only one charged particle.

Discovery of (?)

Number of Neutrino Families

η

Number of Neutrino Families

From Big Bang Nucleosynthesis

Number of Neutrino Families

Measurements from LEP of width of Z resonance

	АЗ.Б₽Н	\$168,9941	2.3	0845	Average
M ₂	91.587	91.187	91.195	91.182	93.\$87
	± 0.813	£9.033	±0.013	± 9.613	:±0.007 (EBP)
r	2501	2483	2494	Z483	2490
	d:56	±36	±56	:254	3:52
r,	84.63	83.38	83.43	\$3.63	83.83
	z0.49	±0.\$4	:±9.52	3:0.53	±0.3
ε ^μ	\$3.62	84.15	83.72	\$3.83	83.84
	:::0.75	±0.77	:\$3.79	± 0.68	±0.39
۴,	84.18	83.55	84.04	82.90	83.68
	:±0.79	±0.91	.≵ ₽.94	±9.77	±0.44
17 _{56 puto} n	84.40	83.56	83,49	83.55	83.84
	± 0.43	.±0.45	±0.46	± 0.44	±0.27
Sadinga.	1746	1723	1746	1743	1740.7
	±\$0	±10	±19	±19	\$5.9
r _{ase}	450	509.4	\$49	539	517
	±68	途7	±120	±43	1:22
Ν.,	2.983	3.057	2.988	2.946	2.993
	± 0.034	A:0.940	-140.050	± 0.045	±0.916
					11 21 2 0 10

$$N_{\rm h} \approx rac{\Gamma_{\rm iev}}{\Gamma_{\rm vol}} = rac{\Gamma_{\rm e^+e^-}}{\Gamma_{\rm vol}} \left[\sqrt{rac{12\pi \Gamma_{\rm hed}}{m_2^2 m_{\rm hed} \Gamma_{\rm (e^+)}}} - rac{\Gamma_{\rm hed}}{\Gamma_{\rm (e^+)}} - 3
ight]$$

 $N_v = 2.994 \pm 0.012$

Neutrino Mass Measurements

Direct mass measurements

- Time-of-flight measurements from distant objects
- Kinematics of Weak Decays

Indirect searches (effects which only exist if M() = 0)

- Neutrino Oscillations
- Neutrinoless Double Beta Decay

Dirac and Majorana Neutrinos

(See Akhmedov 'Neutrino physics ': hep-ph/0001264)

For massive fermion, mass term in Lagrangian:

$$-\mathcal{L}_m=mar{\psi}\psi=\overline{(\psi_L+\psi_R)}(\psi_L+\psi_R)=\overline{\psi_L}\psi_R+\overline{\psi_R}\psi_L$$

Mass term couples left and right-handed components: $\psi = \psi_L + \psi_R$

Dirac Neutrino: left and right-handed fields completely independent Majorana Neutrino : left and right-handed fields charge conjugates

$$\psi_R = (\psi_L)^c = (\psi^c)_R$$
 then: $\psi = \psi_L + \eta(\psi^c)_R = \psi_L + \eta(\psi_L)^c$
so: $\psi^c = \eta^* \psi$: Majorana field is self charge-conjugate

Majorana neutrino is its own anti-particle

Dirac and Majorana masses

Mass matrices : Dirac m_D , Majorana $m_{L_1} m_R$ n species of neutrino: n × n complex matrices

General neutrino mass term in Lagrangian:

$$egin{aligned} &-\mathcal{L}_m = rac{1}{2}
u_L^T \, C \, m_L \,
u_L + \overline{
u}_L \, m_D^* \,
u_R + rac{1}{2}
u_R^T \, C \, m_R^* \,
u_R + h.c. \ &= rac{1}{2} \, n_L^T \, C \mathcal{M} \, n_L + h.c. \end{aligned}$$

where:

$$\mathcal{M}=\left(egin{array}{cc} m_L & m_D \ m_D^T & m_R \end{array}
ight)$$